首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here we show a novel mechanism by which FLICE-like inhibitory protein (c-FLIP) regulates apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and one of its receptors, DR5. c-FLIP is a critical regulator of the TNF family of cytokine receptor signaling. c-FLIP has been postulated to prevent formation of the competent death-inducing signaling complex (DISC) in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. In order to identify regulators of TRAIL function, we used the intracellular death domain (DD) of DR5 as a target to screen a phage-displayed combinatorial peptide library. The DD of DR5 selected from the library a peptide that showed sequence similarity to a stretch of amino acids in the C terminus of c-FLIP(L). The phage-displayed peptide selectively interacted with the DD of DR5 in in vitro binding assays. Similarly, full-length c-FLIP (c-FLIP(L)) and the C-terminal p12 domain of c-FLIP interacted with DR5 both in in vitro pull-down assays and in mammalian cells. This interaction was independent of TRAIL. To the contrary, TRAIL treatment released c-FLIP(L) from DR5, permitting the recruitment of FADD to the active DR5 signaling complex. By employing FADD-deficient Jurkat cells, we demonstrate that DR5 and c-FLIP(L) interact in a FADD-independent manner. Moreover, we show that a cellular membrane permeable version of the peptide corresponding to the DR5 binding domain of c-FLIP induces apoptosis in mammalian cells. Taken together, these findings indicate that c-FLIP interacts with the DD of DR5, thus preventing death (L)signaling by DR5 prior to the formation of an active DISC. Because TRAIL and DR5 are ubiquitously expressed, the interaction of c-FLIP(L) and DR5 indicates a mechanism by which tumor selective apoptosis can be achieved through protecting normal cells from undergoing death receptor-induced apoptosis.  相似文献   

2.
Two general pathways for cell death have been defined, apoptosis and necrosis. Previous studies in Jurkat cells have demonstrated that the Fas-associated death domain (FADD) is required for Fas-mediated signaling to apoptosis and necrosis. Here we developed L929rTA cell lines that allow Tet-on inducible expression and FK506-binding protein (FKBP)-mediated dimerization of FADD, FADD-death effector domain (FADD-DED), or FADD-death domain (FADD-DD). We show that expression and dimerization of FADD leads to necrosis. However, pretreatment of the cells with the Hsp90 inhibitor geldanamycin, which leads to proteasome-mediated degradation of receptor interacting protein 1 (RIP1), reverts FKBP-FADD-induced necrosis to apoptosis. Expression and dimerization of FADD-DD mediates necrotic cell death. We found that FADD-DD is able to bind RIP1, another protein necessary for Fas-mediated necrosis. Expression and dimerization of FADD-DED initiates apoptosis. Remarkably, in the presence of caspase inhibitors, FADD-DED mediates necrotic cell death. Coimmunoprecipitation studies revealed that FADD-DED in the absence procaspase-8 C/A is also capable of recruiting RIP1. However, when procaspase-8 C/A and RIP1 are expressed simultaneously, FADD-DED preferentially recruits procaspase-8 C/A.  相似文献   

3.
白氏文昌鱼FADD的克隆及功能研究   总被引:1,自引:1,他引:0  
Fas死亡结构域相关蛋白(Fas-associated death domain protein,FADD)是死亡信号转导通路中的连接蛋白,在脊椎动物中其结构和功能都很保守.本文首次克隆了头索动物白氏文昌鱼(Branchiostoma belched)FADD(bbFADD)的cDNA和基因组DNA序列.bbFADD cDNA全长1239 bp,编码217个氨基酸.与脊椎动物的FADD一样,bbFADD含有N端的死亡效应结构域(Death Effector Domain,DED)和C端的死亡结构域(Death Domain,DD).bbFADD氨基酸序列的第33位氨基酸苯丙氨酸在进化过程中相对保守,此苯丙氨酸在FADD自我相互作用中具有重要作用.哺乳类的FADD基因编码区含有两个外显子,而bbFADD基因含有3个外显子.一般认为头索动物处在无脊椎动物进化到脊椎动物的中间过渡阶段,但基于FADD氨基酸序列的系统进化树和同源性分析显示,文昌鱼与海胆的亲缘关系更近.bbFADD在HeLa细胞中超表达能够引起HeLa细胞的凋亡,暗示bbFADD可能能够在人类细胞凋亡通路中起作用,推测凋亡系统在生物进化过程中相当保守.  相似文献   

4.
Members of the tumor necrosis factor superfamily of receptors induce apoptosis by recruiting adaptor molecules through death domain interactions. The central adaptor molecule for these receptors is the death domain-containing protein Fas-associated death domain (FADD). FADD binds a death domain on a receptor or additional adaptor and recruits caspases to the activated receptor. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signals apoptosis through two receptors, DR4 and DR5. Although there is much interest in TRAIL, the mechanism by which FADD is recruited to the TRAIL receptors is not clear. Using a reverse two-hybrid system we previously identified mutations in the death effector domain of FADD that prevented binding to Fas/CD95. Here we show that these mutations also prevent binding to DR5. FADD-deficient Jurkat cells stably expressing these FADD mutations did not transduce TRAIL or Fas/CD95 signaling. Second site compensating mutations that restore binding to and signaling through Fas/CD95 and DR5 were also in the death effector domain. We conclude that in contrast to current models where the death domain of FADD functions independently of the death effector domain, the death effector domain of FADD comes into direct contact with both TRAIL and Fas/CD95 receptors.  相似文献   

5.
Apoptosis is a highly regulated process that plays a critical role in neuronal development as well as the homeostasis of the adult nervous system. Vanadate, an environmental toxicant, causes developmental defects in the central nervous system. Here, we demonstrated that vanadate induced apoptosis in cultured cerebellar granule progenitors (CGPs). Treatment of cultured CGPs with vanadate activated ERKs and JNKs but not p38 MAPK and also induced c-Jun phosphorylation. In addition, vanadate induced FasL production, Fas (CD95) aggregation, and its association with the Fas-associated death domain (FADD), as well as the activation of caspase-8. Furthermore, vanadate generated reactive oxygen species (ROS) in CGPs; however, ROS was not involved in vanadate-mediated MAPK activation. Vanadate-induced FasL expression was ROS-dependent but JNK-independent. In contrast, vanadate-elicited Fas aggregation and Fas-FADD association, as well as caspase-8 activation, were dependent on JNK activation but were minimally regulated by ROS generation. The hydrogen peroxide scavenger, catalase, blocked vanadate-induced FasL expression and partially mitigated vanadate-induced cell death. On the other hand, dominant negative FADD and caspase-8 inhibitor completely eliminated vanadate-induced apoptosis. Thus, JNK signaling plays a major role in vanadate-mediated activation of the Fas-FADD-caspase-8 pathway that accounts for vanadate-induced apoptosis of CGPs.  相似文献   

6.
Although evasion of apoptosis is thought to be required for the development of cancer, it is unclear which cell death pathways are evaded. We previously identified a novel epithelial cell death pathway that works in normal cells but is inactivated in tumor cells, implying that it may be targeted during tumor development. The pathway can be activated by the Fas-associated death domain (FADD) of the adaptor protein but is distinct from the known mechanism of FADD-induced apoptosis through caspase-8. Here, we show that a physiological signal (tumor necrosis factor-related apoptosis-inducing ligand) can kill normal epithelial cells through the endogenous FADD protein by using the novel FADD death domain pathway, which activates both apoptosis and autophagy. We also show that selective resistance to this pathway occurs when primary epithelial cells are immortalized and that this occurs through a mechanism that is independent of known events (telomerase activity, and loss of function of p53, Rb, INK4a, and ARF) that are associated with immortalization. These data identify a novel cell death pathway that combines apoptosis and autophagy and that is selectively inactivated at the earliest stages of epithelial cancer development.  相似文献   

7.
8.
Fas-associated death domain protein (FADD)/mediator of receptor-induced toxicity-1 is required for signaling induced by death receptors such as Fas. In earlier studies, FADD-deficient mice died in utero, and a FADD deficiency in embryonic stem cells inhibited T cell production in viable FADD-/- -->RAG-1-/- chimeras. To analyze the temporal requirement of FADD in the development and function in the T lineage, it is necessary to establish viable mutant mice producing detectable FADD-deficient T cells. We generated mice that express a functional FADD:GFP fusion gene reconstituting normal embryogenesis and lymphopoiesis in the absence of the endogenous FADD. Efficient T cell-specific deletion of FADD:GFP was achieved, as indicated by the presence of a high percentage of GFP-negative thymocytes and peripheral T cells in mice expressing Lck-Cre or CD4-Cre. Sorted GFP-negative thymocytes and peripheral T cells contained undetectable levels of FADD and were resistant to apoptosis induced by Fas, TNF, and TCR restimulation. These T cell-specific FADD-deficient mice contain normal thymocyte numbers, but fewer peripheral T cells. Purified peripheral FADD-deficient T cells failed to undergo extensive homeostatic expansion after adoptive transfer into lymphocyte-deficient hosts, and responded poorly to proliferation induced by ex vivo TCR stimulation. Furthermore, deletion of FADD in preactivated mature T cells using retrovirus-Cre resulted in no proliferation. These results demonstrate that FADD plays a dispensable role during thymocyte development, but is essential in maintaining peripheral T cell homeostasis and regulating both apoptotic and proliferation signals.  相似文献   

9.
Increased expression of miR-128a is often observed in acute lymphoblastic leukaemia (ALL) compared with its expression in acute myeloid leukaemia (AML). The objective of this study was to investigate the role of miR-128a, especially that in the Fas-signalling pathway, in T-cell leukaemia cells. The role of miR-128a in Fas-mediated apoptosis was examined by using Fas-activating antibody (CH-11)-susceptible Jurkat cells and -resistant Jurkat/R cells. Whereas ectopic expression of miR-128a conferred Fas-resistance on Jurkat cells by directly targeting Fas-associated protein with death domain (FADD), antagonizing miR-128a expression sensitized Jurkat/R cells to the Fas-mediated apoptosis through derepression of FADD expression. Myeloid leukaemia HL60 and K562 cells were also CH-11-resistant, sharing a similar resistant mechanism with Jurkat/R cells. Furthermore, CH-11 induced demethylation of the promoter region of miR-128a with resultant up-regulation of miR-128a expression in Jurkat/R cells, which was shown to be a mechanism for the resistance of Jurkat/R cells to Fas-mediated apoptosis. Our results indicate that the induction of miR-128a expression by DNA demethylation is a novel mechanism of resistance to Fas-mediated apoptosis.  相似文献   

10.
Protein kinase C (PKC) plays important roles in diverse cellular processes. PKC has been implicated in regulating Fas-associated protein with death domain (FADD), an important adaptor protein involved in regulating death receptor-mediated apoptosis. FADD also plays an important role in non-apoptosis processes. The functional interaction of PKC and FADD in non-apoptotic processes has not been examined. In this study, we show that FADD is involved in maintaining the phosphorylation of the turn motif and hydrophobic motif in the activated conventional PKC (cPKC). A phosphoryl-mimicking mutation (S191D) in FADD (FADD-D) abolished the function of FADD in the facilitation of the turn motif and hydrophobic motif dephosphorylation of cPKC, suggesting that phosphorylation of Ser-191 negatively regulates FADD. We show that FADD interacts with PP2A, which is a major phosphatase involved in dephosphorylation of activated cPKC and FADD deficiency abolished PP2A mediated dephosphorylation of cPKC. We show that FADD deficiency leads to increased stability and activity of cPKC, which, in turn, promotes cytoskeleton reorganization, cell motility, and chemotaxis. Collectively, these results reveal a novel function of FADD in a non-apoptotic process by modulating cPKC dephosphorylation, stability, and signaling termination.  相似文献   

11.
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TNFSF12, CD255) (TWEAK) can stimulate apoptosis in certain cancer cells. Previous studies suggest that TWEAK activates cell death indirectly, by inducing TNFα-mediated autocrine signals. However, the underlying death-signaling mechanism has not been directly defined. Consistent with earlier work, TWEAK assembled a proximal signaling complex containing its cognate receptor FN14, the adaptor TRAF2, and cellular inhibitor of apoptosis protein 1 (cIAP1). Neither the death domain adaptor Fas-associated death domain nor the apoptosis-initiating protease caspase-8 associated with this primary complex. Rather, TWEAK induced TNFα secretion and TNF receptor 1-dependent assembly of a death-signaling complex containing receptor-interacting protein 1 (RIP1), FADD, and caspase-8. Knockdown of RIP1 by siRNA prevented TWEAK-induced association of FADD with caspase-8 but not formation of the FN14-TRAF2-cIAP1 complex and inhibited apoptosis activation. Depletion of the RIP1 E3 ubiquitin ligase cIAP1 enhanced assembly of the RIP1-FADD-caspase-8 complex and augmented cell death. Conversely, knockdown of the RIP1 deubiquitinase CYLD inhibited these functions. Depletion of FADD, caspase-8, BID, or BAX and BAK but not RIP3 attenuated TWEAK-induced cell death. Pharmacologic inhibition of the NF-κB pathway or siRNA knockdown of RelA attenuated TWEAK induction of TNFα and association of RIP1 with FADD and caspase-8. These results suggest that TWEAK triggers apoptosis by promoting assembly of a RIP1-FADD-caspse-8 complex via autocrine TNFα-TNFR1 signaling. The proapoptotic activity of TWEAK is modulated by cIAP1 and CYLD and engages both the extrinsic and intrinsic signaling pathways.  相似文献   

12.
13.
14.
The adapter protein FADD consists of two protein interaction domains and is an essential component of the death inducing signaling complex (DISC) that is formed by activated death receptors of the tumor necrosis factor (TNF) receptor family. The FADD death domain binds to activated receptors such as Fas or other adapters such as TRADD, whereas the FADD death effector domain binds to procaspase 8. Each domain can interact with its target in the absence of the other domain, and this has led to the idea that the two domains function independently. FADD death domain interactions with Fas and TRADD are thought to occur on the same surface; however, the regulation of these interactions is poorly understood. We developed a modified reverse two-hybrid method that can identify mutations, which inhibit some protein-protein interactions without affecting other interactions. Using this method, we identified mutations in FADD that prevent binding to Fas but do not affect binding to TRADD. Surprisingly, these mutations were in the death effector domain rather than the death domain. To test whether the mutants function in mammalian cells, we expressed wild type or mutant FADD molecules in FADD-deficient cells. Wild type FADD rescued both Fas ligand- and TNF-dependent signaling, whereas the FADD death effector domain mutants rescued only TNF signaling. These data indicate that in contrast to current models, the death effector domain of FADD is involved in interaction with Fas.  相似文献   

15.
The molecular machinery of apoptosis is evolutionarily conserved with some exceptions. One such example is the Drosophila proapoptotic gene Head involution defective (Hid), whose mammalian homologue is not known. Hid is apoptotic to mammalian cells, and we have examined the mechanism by which Hid induces death. We demonstrate for the first time a role for the extracellular signal-related kinase-1/2 (Erk-1/2) in the regulation of Hid function in mammalian cells. Bcl-2 and an inhibitor of caspase-9 blocked apoptosis, indicative of a role for the mitochondrion in this pathway, and we provide evidence for a role for caspase-8 in Hid-induced apoptosis. Thus, apoptosis was blocked by an inhibitor of caspase-8, deletion of caspase-8 rendered cells resistant to Hid-induced apoptosis, and Hid associated with caspase-8 in cell lysates. The Fas-associated death domain (FADD) was dispensable for the apoptotic function of Hid, indicating that Hid does not require extracellular death receptor signaling for the activation of caspase-8. In activated T cells, the cytokine interleukin-2 blocked caspase-8 processing and apoptosis, suggesting that survival cues from trophic factors may target a Hid-like intermediate present in mammalian cells. Thus, this study shows that Hid engages with conserved components of cellular death machinery and suggests that apoptotic paradigms characterized by FADD-independent activation of caspase-8 may involve a Hid-like molecule in mammalian cells.  相似文献   

16.
FADD is the key adaptor transmitting the apoptotic signal mediated by death receptors. We have previously shown that FADD protein expression could be lost in vivo in cancerous cells, in mice and humans, and be used as prognostic factor. Furthermore, loss of FADD could contribute to tumor progression and aggressiveness. However, the mechanism accounting for the loss of FADD was unknown. Using in vitro-cultured mouse organ models, we demonstrated that loss of FADD occurred through a new regulatory pathway of FADD expression by secretion. The secretion of FADD is an active release following shedding of microvesicles derived from the plasma membrane. In our experimental settings, this phenomenon was restricted to 6 of 12 FADD-expressing organs. This process is calcium- and adenosine-dependent. Moreover, we identified the two receptors with low affinity to adenosine, namely A(2B) and A(3) adenosine receptors, as regulators of the FADD secretion process. Furthermore, we showed that modulating A(3) adenosine receptor can convert a nonsecreting organ into a FADD-secreting one. Finally, we reported that mouse FADD release occurred in vivo during tumor disease. These results demonstrate the existence of a new localization site (in microvesicles) and regulatory mechanism (by secretion) of the FADD protein, and the implication of adenosine receptors in this process. These data open a new field of investigation consisting of the possibility to regulate FADD expression via the modulation of adenosine receptors, which constitutes a therapeutic target in diseases in which FADD-mediated signaling is impaired.  相似文献   

17.
18.
Because the MAPK pathway plays important roles in cell proliferation and inhibition of apoptosis, this pathway has emerged as a potential therapeutic target for solid tumors and leukemia. At the present time there is little information about activation of this pathway and the consequences of its inhibition in acute lymphocytic leukemia cells (ALL). In the present study, constitutive MAPK pathway activation, as evidenced by phosphorylation of ERK1 and ERK2, was observed in 8 of 8 human lymphoid cell lines and 33% (8:24) of pretreatment ALL bone marrows. Inhibition of this pathway by the MEK inhibitors CI-1040 and PD098059 induced apoptosis through a unique pathway involving dephosphorylation and aggregation of Fas-associated death domain protein followed by death receptor-independent caspase-8 activation. Jurkat cell variants lacking Fas-associated death domain protein or procaspase-8 were resistant to CI-1040-induced apoptosis, as were Jurkat or Molt3 cells treated with the O-methyl ester of the caspase-8 inhibitor N-(Nalpha-benzyloxycarbonylisoleucylglutamyl) aspartate fluoromethyl ketone. In contrast, CI-1040-induced apoptosis was unaffected by blocking anti-Fas antibody, soluble tumor necrosis factor-alpha-related apoptosis-inducing ligand decoy receptor, or transfection with cDNA encoding the anti-apoptotic Bcl-2 family member Mcl-1 or dominant negative caspase-9. Collectively, these results identify the MAPK pathway as a potential therapeutic target in ALL and delineate a mechanism by which MEK inhibition triggers apoptosis in ALL cells.  相似文献   

19.
Regulation of death receptor-mediated apoptosis is incompletely understood. Previous studies have demonstrated that phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, inhibits Fas (CD95)-mediated apoptosis in Jurkat (type II) cells but not SKW6.4 (type I) cells. In this study, we demonstrated that PMA also protects Jurkat cells from apoptosis induced by tumor necrosis factor-alpha and the tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). Interestingly, PMA failed to protect Jurkat cells from apoptosis induced by other agents, including etoposide, camptothecin, and gamma-irradiation. Analysis of the initial events induced by agonistic anti-Fas antibodies revealed that PMA inhibited Fas binding to Fas-associated polypeptide with death domain (FADD) in Jurkat cells but not in SKW6.4 cells. Although the protein kinase inhibitor bisindoylmaleimide VIII increased apoptosis induced by agonistic anti-Fas antibody, tumor necrosis factor-alpha, and TRAIL, these effects were not observed with the protein kinase C inhibitor H7 and were not associated with increased FADD recruitment to Fas. These results indicate that PMA inhibits death signaling induced by a number of discrete receptors and suggest that the effects are mediated at the level of receptor-mediated adaptor molecule recruitment.  相似文献   

20.
We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号