首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
J R Silvius 《Biochemistry》1992,31(13):3398-3408
Carbazole- and indole-labeled phospholipids have been used to monitor the homo- or heterogeneity of lipid mixing in several types of lipid bilayers combining a brominated and a nonbrominated lipid with varying amounts of cholesterol. Experimental quenching curves (relating the normalized probe fluorescence intensity to the mole fraction of brominated lipid) show a characteristic smooth, monophasic form for homogeneous liquid-crystalline lipid mixtures. However, for mixtures exhibiting lipid lateral segregation, such curves show marked perturbations in form over the region of composition where segregation occurs. Using this approach, it is found that high mole fractions of cholesterol (40-50 mol %) promote the formation of apparently homogeneous solutions in mixtures of disaturated and monounsaturated phosphatidylcholines (PCs) that exhibit extensive thermotropic phase separations in the absence of sterol. At only slightly lower levels of cholesterol, however, these systems exhibit inhomogeneous lipid mixing over a wide range of relative proportions of the two PC components. Mixtures of cerebroside and monounsaturated PCs, even at high bilayer cholesterol contents, exhibit significant inhomogeneity in lipid mixing over a wide range of cerebroside/PC ratios. Phase-separating PC/PC and PC/cerebroside mixtures can readily form long-lived metastable solutions when the level of the higher-melting component in the liquid-crystalline phase exceeds its equilibrium solubility by as much as 20-30 mol %; this tendency is significantly increased by cholesterol. Cholesterol shows no significant ability to enhance lipid intermixing in a third type of phase-separating lipid system, combining a monounsaturated PC with a monounsaturated phosphatidic acid--calcium complex. Experiments using cleavable phospholipid conjugates, linking a fluorescent lipid to a brominated lipid, suggest that each fluorescent molecule probes a local lipid domain comprising approximately less than 40-50 nearby acyl chains.  相似文献   

2.
I Graham  J Gagné  J R Silvius 《Biochemistry》1985,24(25):7123-7131
The effects of calcium on the mixing of synthetic diacylphosphatidylcholines (PC's) and diacylphosphatidylethanolamines (PE's) with the corresponding phosphatidic acids (PA's) have been examined by high-sensitivity differential scanning calorimetry and by measurements of the fluorescence of labeled PA or PC species in PA-PC bilayers. Calorimetrically derived phase diagrams for dimyristoyl- and dielaidoyl-substituted PA-PC and PA-PE mixtures indicate that these species are readily miscible in the absence of calcium but phase-separate very extensively in the presence of high levels of calcium (30 mM). The limiting solubilities of PA (Ca2+) in liquid-crystalline PC or PE bilayers are less than or equal to 10 and approximately 5 mol %, respectively, while approximately 20 mol % of PC or PE can be introduced into the "cochleate" phase of PA (Ca2+) before a distinct PC-rich (or PE-rich) phase appears. The kinetics of calcium-induced lateral phase separations were examined for dioleoyl- and dielaidoyl-substituted PA-PC unilamellar vesicles labeled with fluorescent (C12-NBD-acyl) PA or PC, whose fluorescence becomes partially quenched upon phase separation. Our results indicate that, for the PA-PC system, lateral phase separation is very rapid (approximately less than 1 s) after calcium addition and develops partially (possibly in only one face of the bilayer) when calcium is present only on one side of the bilayer. Moreover, phase separations can develop at a rate faster than that of vesicle diffusion when calcium is added to dilute suspensions of vesicles, suggesting that interbilayer contacts are not essential to promote phase separations.  相似文献   

3.
The ability of calcium to induce phase separation in multicomponent lipid mixtures containing various unsaturated species of acidic and neutral phospholipids has been investigated by 31P NMR, 3H NMR, and small-angle X-ray diffraction techniques. It is shown that, in unsaturated (dioleoyl-) phosphatidylglycerol (PG)/phosphatidylethanolamine (PE) (1:1) and phosphatidic acid (PA)/phosphatidylcholine (PC) (1:1) mixtures, calcium is unable to induce lateral phase separation of the acidic and neutral lipids and that all the lipids adopt a hexagonal (HII) phase in the presence of calcium. In multicomponent mixtures containing one or more acidic species the presence of cholesterol either facilitates calcium-induced lamellar to hexagonal (HII) transitions for all the lipid components or, in systems already in a hexagonal (HII) phase, mitigates against calcium-induced lateral phase separations. Further, cholesterol is shown to exhibit no preferential interaction on the NMR time scale with either PC, PE, or phosphatidylserine (PS) when the lipids are in the liquid-crystal state. The ability of cholesterol to directly induce HII phase formation in PC/PE mixtures is also shown to be common to various other sterols including ergosterol, stigmasterol, coprostanol, epicoprostanol, and androstanol.  相似文献   

4.
The interactions of unilamellar vesicles containing phosphatidylcholine (PC) and phosphatidic acid (PA) in the presence of calcium and magnesium were examined by fluorometric assays of vesicle lipid mixing, contents mixing, and contents leakage and by spray-freezing freeze-fracture electron microscopy. These results were correlated with calorimetric and fluorometric measurements of divalent cation induced lateral segregation of lipids in these vesicles under comparable conditions. PA-PC vesicles in the presence of calcium show a rapid but limited intermixing of vesicle lipids and contents, the extent of which increases as the vesicle size decreases or the PA content increases. Calcium produces massive aggregation and efficient mixing of the contents of vesicles containing high proportions of dioleoyl-PA or egg PA, but vesicle coalescence in the latter case is followed rapidly by vesicle collapse and massive leakage of contents. The effects of magnesium are similar for vesicles of very high PA content. However, in the presence of magnesium, vesicles containing lower amounts of PA exhibit "hemifusion", a mode of interaction in which vesicles aggregate and mix approximately 50% of their lipids, apparently representing the lipids of the outer monolayer of each vesicle, without significant mixing of vesicle contents or collapse of the vesicles. Fluorometric measurements of lipid lateral segregation demonstrate that lateral redistribution of lipids in PA-PC vesicles begins at submillimolar concentrations of divalent cations and shows no abrupt change at the "threshold" divalent cation concentration, above which coalescence of vesicles is observed. By correlating calorimetric and fluorometric measurements of lipid lateral segregation and mixing of vesicle components, we can demonstrate that lipid segregation is at least strongly correlated with calcium-promoted coalescence of PA-PC vesicles and is essential to the magnesium-promoted interactions of vesicles of low PA contents.  相似文献   

5.
The individual and combined effects of the saturated diacylglycerol (DAG) dipalmitin (DP) and saturated or polyunsaturated unesterified fatty acids (PUFAs) on both the structure of phosphatidylcholine/phosphatidylserine (PC/PS; 4:1 mol/mol) bilayers and on protein kinase C (PKC) activity were studied using 2H nuclear magnetic resonance (NMR) and enzyme activity assays. In the absence of DP, PUFAs only slightly activated PKC whereas palmitic acid had no effect. In the absence of fatty acids, DP induced lateral phase separation of the bilayer into liquid-crystalline and gel phases. Under these conditions virtually all DP was sequestered into the gel phase and no activation of PKC was observed. The addition of polyunsaturated arachidonic or docosahexaenoic acids to the DP-containing bilayers significantly increased the relative amounts of DP and other lipid components in the liquid-crystalline phase, correlating with a dramatic increase in PKC activity. Furthermore, the effect was greater with PS, resulting in an enrichment of PS in the liquid-crystalline domains. In the presence of DP, palmitic acid did not decrease the amount of gel phase lipid and had no effect on PKC activity. The results explain the observed lack of PKC-activating capacity of long-chain saturated DAGs as due to the sequestration of DAG into gel domains wherein it is complexed with phospholipids and thus not available for the required interaction with the enzyme.  相似文献   

6.
The structure and physical properties of aqueous dispersions of 1,2-diacyl-sn-glycero-3-phosphoethanolamines (PE's) and their N-methylated analogues have been studied by scanning calorimetry, 31P nuclear magnetic resonance, and freeze-fracture electron microscopy. While successive N-methylations of a diacylphosphatidylethanolamine cause only modest decreases in its gel to liquid-crystalline phase transition temperature, the introduction of even a single N-methyl group sharply increases the temperature at which the lipid forms a hexagonal II phase. However, 31P nuclear magnetic resonance and electron microscopy show that unlike pure PE species, N-methylated PE's can form a variety of irregular nonlamellar structures at temperatures well below that at which a well-defined hexagonal II phase is formed. The rate of calcium-induced leakage of encapsulated carboxyfluorescein from large unilamellar vesicles composed of dioleoyl- or dielaidoylphosphatidylserine and the corresponding PE is strongly reduced when PE is replaced by N-methylated derivatives. The rate of calcium-induced intermixing of lipids of PE/phosphatidylserine (PS) vesicles steadily decreases as the PE component is successively replaced by its mono-, di-, and tri-N-methylated (phosphatidylcholine) derivatives. By correlating calorimetrically obtained phase diagrams with measurements of vesicle lipid intermixing, we conclude that dielaidoyl-N-methylphosphatidylethanolamine, like PE, can support direct interactions between the surfaces of PS/N-methyl-PE vesicles without lateral separation of a PS(Ca2+)-rich phase, while dielaidoyl-N,N-dimethyl-PE (and phosphatidylcholine) cannot.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
J M East  A G Lee 《Biochemistry》1982,21(17):4144-4151
1,2-Bis(9,10-dibromooleoyl)phosphatidylcholine (BRPC) has been prepared from dioleoylphosphatidylcholine (DOPC). It is shown that the gel to liquid-crystalline phase transition for BRPC occurs below ca. 5 degrees C and that the motional properties of bilayers of BRPC and DOPC as detected by spin-labeled fatty acids are similar. The ATPase activities of the (Ca2+-Mg2+)-ATPase from rabbit muscle sarcoplasmic reticulum reconstituted with BRPC and DOPC are similar. The brominated lipid quenches the fluorescence of the ATPase and can be used to determine selectivity of lipid binding to the ATPase. We show that there is little selectivity on the basis of fatty acyl chain length. Binding constants for phosphatidylcholines and phosphatidylserines are similar in the absence of calcium, although that for phosphatidylserine decreases in the presence of calcium. Phosphatidylethanolamines binds less strongly than phosphatidylcholines, although the difference is small. The largest difference in binding constants is seen between phosphatidylcholines in the gel and liquid-crystalline phases, with a distribution coefficient of 30 in favor of the liquid-crystalline phase. It is shown that the distribution of the ATPase in mixtures of dipalmitoylphosphatidylcholine and BRPC can be understood in terms of the phase diagram for this mixture of lipids. Activities of the ATPase in the presence of mixtures of lipids can be explained in terms of the relative binding constants obtained from the fluorescence experiments.  相似文献   

8.
Bilayers containing phosphatidylcholine (PC) and the anionic lipid phosphatidic acid (PA) are particularly effective at stabilizing the nicotinic acetylcholine receptor (nAChR) in a functional conformation that undergoes agonist-induced conformational change. The physical properties of PC membranes containing PA are also substantially altered upon incorporation of the nAChR. To test whether or not the negative charge of PA is responsible for this "bi-directional coupling," the nAChR was reconstituted into membranes composed of PC with varying levels of the net negatively charged lipid phosphatidylserine (PS). In contrast to PA, increasing levels of PS in PC membranes do not stabilize an increasing proportion of nAChRs in a functional resting conformation, nor do they slow nAChR peptide hydrogen exchange kinetics. Incorporation of the nAChR had little effect on the physical properties of the PC/PS membranes, as monitored by the gel-to-liquid crystal phase transition temperatures of the bilayers. These results show that a net negative charge alone is not sufficient to account for the unique interactions that occur between the nAChR and PC/PA membranes. Incorporation of the receptor into PC/PS membranes, however, did lead to an altered head group conformation of PS possibly by recruiting divalent cations to the membrane surface. The results show that the nAChR has complex and unique interactions with both PA and PS. The interactions between the nAChR and PS may be bridged by divalent cations, such as calcium.  相似文献   

9.
The binding of calcium to headgroup deuterated 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) was investigated by using deuterium magnetic resonance in pure POPS membranes and in mixed 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS 5:1 (m:m) bilayers. Addition of CaCl2 to pure POPS bilayers led to two component spectra attributed, respectively, to liquid-crystallin POPS (less than 15 kHz) and POPS molecules in the calcium-induced dehydrated phase (cochleate) (approximately 120 kHz). The liquid-crystalline component has nearly disappeared at a Ca2+ to POPS ratio of 0.5, indicating that, under such conditions, most of the POPS molecules are in the precipitated cochleate phase. After dilution of the POPS molecules in zwitterionic POPC membranes (POPC/POPS 5:1 m:m), single component spectra characteristic of POPS in the liquid-crystalline state were observed in the presence of Molar concentrations of calcium ions (Ca2+ to POPS ratio greater than 50), showing that the amount of dehydrated cochleate PS-Ca2+ phase, if any, was low (less than 5%) under such conditions. Deuterium NMR data obtained in the 15-50 degrees C temperature range with the mixed PC/PS membranes, either in the absence or the presence of Ca2+ ions, indicate that the serine headgroup undergoes a temperature-induced conformational change, independent of the presence of Ca2+. This is discussed in relation to other headgroup perturbations such as that observed upon change of the membrane surface charge density.  相似文献   

10.
Modulation of bovine milk galactosyltransferase activity by lipids   总被引:3,自引:0,他引:3  
The effect of lipids singly and in combination on the ability of galactosyltransferase to transfer galactose to N-acetyl-D-glucosamine-forming lactosamine and to glucose forming lactose has been studied. Lecithins, as egg phosphatidylcholine (PC), or saturated as dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine stimulated the activity of the enzyme to form lactosamine to different extents. Egg PC produced the greatest stimulation of all the lecithins tested. Egg phosphatidic acid (PA) inhibited the activity of the enzyme at very low concentrations of lipid. In mixed vesicles of gel phase or liquid crystalline phase lecithins and egg PA, the acidic lipid was able to overcome the stimulation produced by the lecithins. The dominant effect of the head group was demonstrated by the effects of gel phase dimyristoylphosphatidic acid (DMPA). In mixtures with PC, DMPA also was able to inhibit the enzyme for lactosamine synthesis but higher concentrations of the gel phase DMPA were required for inhibition compared to the liquid crystalline PA. Although the head group appeared to dominate the inhibition, the nature of the acyl chains of the lipid played a secondary role at least. Other acid lipids, phosphatidylserine (PS) and phosphatidylinositol (PI) were much less effective than PA. PS alone inhibited the activity of the enzyme. However, in mixed lipids (PS and egg PC), PS was unable to reverse the stimulation produced by PC while PC was able to reverse the inhibition produced by PS. PI alone had no effect on the enzyme activity. In mixtures with egg PC, the stimulating effect of PC was dominant. In the lactose synthetase reaction, the effect of lipids was similar to that of the lactosamine synthetase, i.e. PC stimulated and PA inhibited activity and in mixtures of PC and PA, the inhibitory effect of PA was dominant.  相似文献   

11.
The aim of the present study is to establish under which conditions tRNA associates with phospholipid bilayers, and to explore how this interaction influences the lipid bilayer. For this purpose we have studied the association of tRNA or DNA of different sizes and degrees of base pairing with a set of model membrane systems with varying charge densities, composed of zwitterionic phosphatidylcholines (PC) in mixtures with anionic phosphatidylserine (PS) or cationic dioctadecyl-dimethyl-ammoniumbromide (DODAB), and with fluid or solid acyl-chains (oleoyl, myristoyl and palmitoyl). To prove and quantify the attractive interaction between tRNA and model-lipid membrane we used quartz crystal microbalance with dissipation (QCM-D) monitoring to study the tRNA adsorption to deposit phospholipid bilayers from solutions containing monovalent (Na+) or divalent (Ca2+) cations. The influence of the adsorbed polynucleic acids on the lipid phase transitions and lipid segregation was studied by means of differential scanning calorimetry (DSC). The basic findings are: i) tRNA adsorbs to zwitterionic liquid-crystalline and gel-phase phospholipid bilayers. The interaction is weak and reversible, and cannot be explained only on the basis of electrostatic attraction. ii) The adsorbed amount of tRNA is higher for liquid-crystalline bilayers compared to gel-phase bilayers, while the presence of divalent cations show no significant effect on the tRNA adsorption. iii) The adsorption of tRNA can lead to segregation in the mixed 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC)-1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) and DMPC-DODAB bilayers, where tRNA is likely excluded from the anionic DMPS-rich domains in the first system, and associated with the cationic DODAB-rich domains in the second system. iv) The addition of shorter polynucleic acids influence the chain melting transition and induce segregation in a mixed DMPC-DMPS system, while larger polynucleic acids do not influence the melting transition in these system. The results in this study on tRNA-phospholipid interactions can have implications for understanding its biological function in, e.g., the cell nuclei, as well as in applications in biotechnology and medicine.  相似文献   

12.
Effect of spectrin from human erythrocytes on structure properties of lipid bilayers formed from a mixture of phosphatidylethanolamine/phosphatidylserine (PE/PS) and/or phosphatidylethanolamine/phosphatidylcholine (PE/PC) was studied with the use of fluorescence and microcalorimetric methods. Spectrin did not affect the order parameter of lipids in PE/PS vesicles. However, spectrin binding to liposomes did influence temperature, half-width and enthalpy of phase transitions in mixtures of dimyristoylphosphatidylethanolamine (DMPE) and dimyristoylphosphatidylcholine (DMPC), and this effect was dependent on DMPE to DMPC weight ratio. A change in miscibility of the components in the presence of spectrin was observed and it might be due to spectrin-PE interactions.  相似文献   

13.
Exchangeable phospho- and sphingolipid probes (phosphatidylcholine, -ethanolamine, -serine, and -glycerol, phosphatidic acid, sphingomyelin, cerebroside, and sulfatide) have been synthesized in which one acyl chain is substituted with a fluorescent bimanyl, 7-(dimethylamino)coumarin-3-yl, or diphenyl-hexatrienyl group. The distribution of these probes between two different populations of lipid vesicles can be readily monitored by fluorescence intensity measurements, as described by Nichols and Pagano [Nichols, J. W., & Pagano, R. E. (1982) Biochemistry 21, 1720-1726], when one of the vesicle populations contains a low mole fraction of a nonexchangeable quencher, (12-DABS)-18-PC. The probes examined in this study exchange between phospholipid vesicles on a time scale of minutes, with kinetics indicating that the transfer process takes place by diffusion of probe monomers through the aqueous phase. As expected, lipid probes with different charges differ markedly in their equilibrium distributions between neutral and charged lipid vesicles. However, probes with different polar headgroups differ only modestly in their relative affinities for vesicles composed of "hydrogen-bonding" lipids (PE and PS) vs "non-hydrogen-bonding" lipids (PC and PG or O-methyl-PA). Probes with different headgroups also show modest, albeit reproducible, differences in their relative affinities for cholesterol-containing vs cholesterol-free PC/PG vesicles. Our results suggest that lipids with different headgroup structures may mix more nearly ideally in liquid-crystalline lipid bilayers than would be predicted from previous analyses of the phase diagrams for binary lipid mixtures.  相似文献   

14.
We have used assays of lipid probe mixing, contents mixing and contents leakage to monitor the divalent cation-mediated interactions between lipid vesicles containing phosphatidylserine (PS) as a minority component together with mixtures of phosphatidylethanolamine (PE), phosphatidylcholine (PC) or sphingomyelin, and cholesterol in varying proportions. The initial rates of calcium- and magnesium-induced lipid probe quenching between vesicles, which reflect primarily the rates of vesicle aggregation, are strongly reduced as progressively higher proportions of PC or sphingomyelin are incorporated into PE/PS vesicles. The initial rates of divalent cation-induced contents mixing and contents leakage for PE/PS vesicles are also strongly reduced when choline phospholipids are incorporated into the vesicles in even low molar proportions. Sphingomyelin has a more potent inhibitory effect on these processes than does PC at an equal level in the vesicle membranes. The inclusion of cholesterol in these vesicles, at levels up to 1:2 moles sterol/mole phospholipid, has little effect on the rates of calcium- or magnesium-induced vesicle aggregation. However, cholesterol significantly enhances the initial rates of vesicle contents mixing and contents leakage in the presence of divalent cations when the vesicles contain choline as well as amino phospholipids. This effect is substantial only when the level of cholesterol exceeds the level of choline phospholipids in the vesicles. These results may have significance for the fusion of certain cellular membranes in mammalian cells, whose cytoplasmic faces have lipid compositions very similar to those of the vesicles examined in this study.  相似文献   

15.
Using liposomes composed of either brain phosphatidylcholine (PC), or binary mixtures of PC and phosphatidylserine (PS), galactolipids (GL), phosphatidylinositol (PI), cardiolipin (CL), phosphatidic acid (PA), or phosphatidylethanolamine (PE), we investigated the effects of graded amounts of boric acid (B, 0.5-1000 microM) on the following membrane physical properties: (a) surface potential, (b) lipid rearrangement through lateral phase separation, (c) fluidity, and (d) hydration. Incubation of the different populations of vesicles with B was associated with a small, but statistically significant, increase in membrane surface potential in PC, PC:PS, PC:GL, PC:PI, PC:PA, and PC:PE liposomes. B-induced lipid lateral rearrangement through lateral phase separation in PC, PC:PA, and PC:PE liposomes; but had no effects on PC:PS, PC:GL, and PC:PI liposomes. In PC liposomes B affected membrane fluidity at the water-lipid interface without affecting the hydrophobic core of the bilayer. In all the other binary liposomes studied, B increased membrane fluidity in both, the hydrophobic portion of the membrane and in the anionic domains. The above was associated with a decrease in the fluidity of the cationic domains. B (10-1000 microM) decreased membrane hydration regardless the composition of the liposomes. The obtained results demonstrate the ability of B to interact with membranes, and induce changes in membrane physical properties. Importantly, the extent of B-membrane interactions and the consequent effects were dependent on the nature of the lipid molecule; as such, B had greater affinity with lipids containing polyhydroxylated moieties such as GL and PI. These differential interactions may result in different B-induced modulations of membrane-associated processes in cells.  相似文献   

16.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (approximately 11-15 degrees C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (approximately 23-25 degrees C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing approximately 30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

17.
The mixing properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were examined in liquid-crystalline phase using fluorescent probes incorporated into lipid bilayers. The excimer to monomer (E/M) fluorescence ratio of 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine (PPC) versus PPC concentration was higher for binary mixtures containing phosphatidylcholine (PC)/phosphatidylethanolamine (PE) (1:1) compared to PC matrix. When POPC was gradually replaced with POPE, the E/M ratio also increased suggesting the enhanced lateral mobility or the lateral enrichment of PPC into domains or both. Evidences for the PE-induced domain formation were further provided by resonance energy transfer between 2-(4, 4-difluoro-5-methyl-4-boro-3a, 4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero- 3-phospho choline and PPC, which was enhanced as a function of PE concentration, and by the polarization of 1,6-diphenyl-1,3, 5-hexatriene. In addition, PE reduced free volume and polarity of lipid bilayers as measured by the emission fluorescence of 1,2-bis PPC and 6-lauroyl-2-dimethylaminonaphthalene. When POPE analogs with a methylated head group instead of normal POPE were used, the diminished effect on the domain formation was shown in the order N-methyl PE > N,N-dimethyl PE. The results suggest that the mixing properties of POPE and POPC are not random but that lipid domains of phospholipids are formed.  相似文献   

18.
Sticholysin I and II (St I and St II), two basic cytolysins purified from the Caribbean sea anemone Stichodactyla helianthus, efficiently permeabilize lipid vesicles by forming pores in their membranes. A general characteristic of these toxins is their preference for membranes containing sphingomyelin (SM). As a consequence, vesicles formed by equimolar mixtures of SM with phosphatidylcholine (PC) are very good targets for St I and II. To better characterize the lipid dependence of the cytolysin-membrane interaction, we have now evaluated the effect of including different lipids in the composition of the vesicles. We observed that at low doses of either St I or St II vesicles composed of SM and phosphatidic acid (PA) were permeabilized faster and to a higher extent than vesicles of PC and SM. As in the case of PC/SM mixtures, permeabilization was optimal when the molar ratio of PA/SM was ~1. The preference for membranes containing PA was confirmed by inhibition experiments in which the hemolytic activity of St I was diminished by pre-incubation with vesicles of different composition. The inclusion of even small proportions of PA into PC/SM LUVs led to a marked increase in calcein release caused by both St I and St II, reaching maximal effect at ~5 mol % of PA. Inclusion of other negatively charged lipids (phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), or cardiolipin (CL)), all at 5 mol %, also elicited an increase in calcein release, the potency being in the order CL approximately PA > PG approximately PI approximately PS. However, some boosting effect was also obtained, including the zwitterionic lipid phosphatidylethanolamine (PE) or even, albeit to a lesser extent, the positively charged lipid stearylamine (SA). This indicated that the effect was not mediated by electrostatic interactions between the cytolysin and the negative surface of the vesicles. In fact, increasing the ionic strength of the medium had only a small inhibitory effect on the interaction, but this was actually larger with uncharged vesicles than with negatively charged vesicles. A study of the fluidity of the different vesicles, probed by the environment-sensitive fluorescent dye diphenylhexatriene (DPH), showed that toxin activity was also not correlated to the average membrane fluidity. It is suggested that the insertion of the toxin channel could imply the formation in the bilayer of a nonlamellar structure, a toroidal lipid pore. In this case, the presence of lipids favoring a nonlamellar phase, in particular PA and CL, strong inducers of negative curvature in the bilayer, could help in the formation of the pore. This possibility is confirmed by the fact that the formation of toxin pores strongly promotes the rate of transbilayer movement of lipid molecules, which indicates local disruption of the lamellar structure.  相似文献   

19.
The lateral distribution of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl]phosphatidylcholine (PyrPC) was studied in small unilamellar vesicles of 1,2-dipalmitoyl-, 1,2-dimyristoyl-, and 1-palmitoyl-2-oleoyl-phosphatidylcholine (DPPC, DMPC, and POPC, respectively) under anaerobic conditions. The DPPC and DMPC experiments were carried out over temperature ranges above and below the matrix phospholipid phase transition temperature (Tm). The excimer to monomer fluorescence intensity ratio (E/M) was determined as a function of temperature for the three PyrPC/lipid mixtures. Phase and modulation data were used to determine the temperature dependence of pyrene fluorescence rate parameters in gel and in liquid-crystalline bilayers. These parameters were then used to provide information about excited-state fluorescence in phospholipid bilayers, calculate the concentration of the probe within liquid-crystalline and gel domains in the phase transition region of PyrPC in DPPC, and simulate E/M vs. temperature curves for three systems whose phase diagrams are different. From the simulated curves we could determine the relationship between the shape of the three simulated E/M vs. temperature curves and the lateral distribution of the probe. This information was then used to interpret the three experimentally derived E/M vs. temperature curves. Our results indicate that PyrPC is randomly distributed in pure gel and fluid phosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Monte Carlo simulation of lipid mixtures: finding phase separation.   总被引:2,自引:1,他引:1       下载免费PDF全文
The nonideal mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) binary lipid mixtures was studied by computer simulation based on a model wherein the excess energy of mixing is divided between an electrostatic term and one adjustable term delta Em that includes all other nonideal interactions. The lateral distribution of the lipids and the energy of the mixtures were obtained by using Kawasaki relaxation in a canonical ensemble. The Gibbs free energies were calculated by Kirkwood's coupling parameter method. The simulation results are strongly dependent on simulation size for sizes smaller than about 1000 lipids. Nonideal interaction between lipids can result in large scale separation of lipid phases of different composition at reasonable delta Em values as well as clustering of like lipids. In plots of total Gibbs free energy of mixing versus PS mole fraction in PS/PC, the boundaries of the two phase region could be accurately determined. The electrostatic interaction influences cluster size and shape, and also the composition of phases in the two-phase region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号