首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of dicarboxylic phosphatidylcholines (glutarylphosphatidylcholine) on the structural changes of phosphatidylcholine liposomes is examined by using multilamellar liposomes prepared with egg phosphatidylcholine or dipalmitoylphosphatidylcholine and by varying the surface charge by addition of dicetyl phosphate. Investigations are performed by gel chromatography and electron microscopy. Glutarylphosphatidylcholine is in micellar form (rod-like micelles or globular micelles). The structures obtained depend on the fatty acid saturation of liposomes and on the charge of liposome (addition or not of dicetyl phosphate). With egg phosphatidylcholine/glutarylphosphatidylcholine dispersions, an aspect more similar to myelinic figures than liposomes is observed, while in the presence of dicetyl phosphate, liposomes similar to control egg phosphatidylcholine liposomes are obtained. Gel chromatography on Sepharose 4B and turbidity measurements prove that dicetyl phosphate increases the stability of egg phosphatidylcholine/glutarylphosphatidylcholine mixtures. On the other hand, in dipalmitoylphosphatidylcholine/glutarylphosphatidylcholine dispersions, incorporation of dicetyl phosphate destabilizes bilayer structure and the formation of mixed micelles occurs. Viscosity measurement shows, in the presence of dicetyl phosphate, an increased fluidity for dipalmitoylphosphatidylcholine/glutarylphosphatidylcholine dispersions, in agreement with the micellar organization. These data confirm that the disorganization of liposomal membranes by dicarboxylic phosphatidylcholine depends on the fatty acid composition of phosphatidylcholine and on the presence of dicetyl phosphate.  相似文献   

3.
The major phospholipid exchange protein from bovine brain catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between rat liver microsomes and sonicated liposomes. The effect of liposomal lipid composition on the transfer of these phospholipids has been investigated. Standard liposomes contained phosphatidylcholine-phosphatidic acid (98:2, mol%); in general, phosphatidylcholine was substituted by various positively charged, negatively charged, or zwitterionic lipids. The transfer of phosphatidylinositol was essentially unaffected by the incorporation into liposomes of phosphatidic acid, phosphatidylserine, or phosphatidylglycerol (5–20 mol%) but strongly depressed by the incorporation of stearylamine (10–40 mol%). Marked stimulation (2–4-fold) of transfer activity was observed into liposomes containing phosphatidylethanolamine (2–40 mol%). The inclusion of sphingomyelin in the acceptor liposomes gave mixed results: stimulation at low levels (2–10 mol%) and inhibition at higher levels (up to 40 mol%). Cholesterol slightly diminished transfer activity at a liposome cholesterol/phospholipid molar ratio of 0.81. Similar effects were noted for the transfer to phosphatidylcholine from microsomes to these various liposomes. Compared to standard liposomes, the magnitude of Km tended to increase for liposomes which depressed phospholipid transfer and to decrease for those which stimulated; little change was observed in the values of V. Single phospholipid liposomes of phosphatidylinositol were inhibitory when added to standard liposomes.  相似文献   

4.
A hybridoma secreting a monoclonal IgM 'anti-liposome' antibody was produced after injecting a mouse with liposomes containing dipalmitoylphosphatidylcholine, cholesterol, dicetyl phosphate, and lipid A. The antibody was selected by assaying for complement-dependent damage to liposomes lacking lipid A. The monoclonal antibody reacted best with liposomes containing the original immunizing mixture of lipids. Deletion of individual lipid constituents from liposomes diminished the ability of the liposomes to bind (adsorb) the antibody. Binding of the antibody was enhanced by including lipid A or galactosylceramide in the lipid bilayer, or by substituting egg phosphatidylcholine for dimyristoyl- (or dipalmitoyl-) phosphatidylcholine. Sphingomyelin could be substituted for dimyristoylphosphatidylcholine without altering the adsorption of antibody. Although the monoclonal anti-liposome antibody was completely inhibited by phosphocholine, it was probably not a conventional anti-phosphocholine antibody. The antibody apparently had a partial specificity for phosphate, and was inhibited by glycerophosphocholine, glycerophosphate, sodium phosphate, sodium sulfate, and inositol hexaphosphate, but not by choline or inositol.  相似文献   

5.
Cholesterol transfer from small and large unilamellar vesicles   总被引:3,自引:0,他引:3  
The rates of transfer of [14C]cholesterol from small and large unilamellar cholesterol/egg yolk phosphatidylcholine vesicles to a common vesicle acceptor were compared at 37 degrees C. The rate of exchange of cholesterol between vesicles of identical cholesterol concentrations (20 mol%) did not differ from the rate of transfer from donor vesicles containing 20 mol% cholesterol to egg yolk PC vesicles. Further, the rate of transfer of [14C]cholesterol from vesicles containing 15 mol% dicetyl phosphate (to confer a negative charge) was not different from the rate of transfer from neutral vesicles. However, the half-time for transfer of [14C]cholesterol from large unilamellar donor vesicles was about 5-times greater (10.2 h, 80 nm diameter) than from small unilamellar vesicles (2.3 h, 23 nm diameter). These data suggest that increased curvature in small unilamellar vesicles reduces cholesterol-nearest neighbor interactions to allow a more rapid transfer of cholesterol into the aqueous phase.  相似文献   

6.
The mechanism of membrane damage by staphylococcal alpha-toxin was studied using carboxyfluorescein (internal marker)-loaded multilamellar liposomes prepared from various phospholipids and cholesterol. Liposomes composed of phosphatidylcholine or sphingomyelin and cholesterol bound alpha-toxin and released carboxyfluorescein in a dose dependent manner, when they were exposed to alpha-toxin of concentrations higher than 1 or 8 micrograms/ml, respectively. In contrast, the other liposomes composed of phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol or phosphatidylinositol plus cholesterol were not susceptible to the toxin even at high concentrations up to 870 micrograms/ml. The insensitive liposomes containing either phosphatidylserine or phosphatidylglycerol were made sensitive to alpha-toxin by inserting phosphatidylcholine into the liposomal membranes. In addition, phosphorylcholine inhibited the toxin-induced marker release from liposomes. These results indicated that the choline-containing phospholipids are required for the interaction between alpha-toxin and liposomal membranes. Susceptibility of liposomes containing phosphatidylcholine or sphingomyelin increased with the increase in cholesterol contents of the liposomes. Based on these results, we propose that the choline-containing phospholipids are possible membrane components or structures responsible for the toxin-membrane interaction, which leads to damage of membranes. Furthermore, cholesterol may facilitate the interaction between alpha-toxin and membrane as a structural component of the membrane.  相似文献   

7.
The presence of cholesterol or phosphatidylethanolamine in sphingomyelin liposomes enhanced 2- to 10-fold the breakdown of sphingomyelin by sphingomyelinase from Bacillus cereus. On the other hand, the presence of phosphatidylcholine was either without effect or slightly stimulative at a higher molar ratio of phosphatidylcholine to sphingomyelin (3/1). In the bovine erythrocytes and their ghosts, the increase by 40-50% or the decrease by 10-23% in membranous cholesterol brought about acceleration or deceleration of enzymatic degradation of sphingomyelin by 50 or 40-50%, respectively. The depletion of ATP (less than 0.9 mg ATP/100 ml packed erythrocytes) enhanced K+ leakage from, and hot hemolysis (lysis without cold shock) of, bovine erythrocytes but decelerated the breakdown of sphingomyelin and hot-cold hemolysis (lysis induced by ice-cold shock to sphingomyelinase-treated erythrocytes), either in the presence of 1 mM MgCl2 alone or in the presence of 1 mM MgCl2 and 1 mM CaCl2. Also, ATP depletion enhanced the adsorption of sphingomyelinase onto bovine erythrocyte membranes in the presence of 1 mM CaCl2 up to 81% of total activity, without appreciable K+ leakage and hot or hot-cold hemolysis. These results suggest that the presence of cholesterol or phosphatidylethanolamine in biomembranes makes the membranes more susceptible to the attack of sphingomyelinase from B. cereus and that the segregation of lipids and proteins in the erythrocyte membranes by ATP depletion causes the deceleration of sphingomyelin hydrolysis despite the enhanced enzyme adsorption onto the erythrocyte membranes.  相似文献   

8.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

9.
Liposomes prepared with 25-hydroxycholesterol and egg phosphatidylcholine (PC) were incubated with bovine arterial smooth muscle cells for 8 h at 37 degrees C. Cells incubated in the absence of liposomes or with liposomes containing cholesterol and PC were used as controls. The results indicated that calcium accumulated in the smooth muscle cells incubated in the presence of 25-hydroxycholesterol containing liposomes in an amount proportional to the time of incubation. The calcium accumulation, as indicated by kinetic analysis, resulted from an increased compartment size. (Ca(2+)+Mg2+)-ATPase exhibited decreased activity after pretreatment with 25-hydroxycholesterol containing liposomes and the increased intracellular calcium content was directly proportional to the decreased (Ca(2+) + Mg2+)-ATPase activity. When lipids in the cell membrane were examined, a failure to change the cholesterol/phospholipids ratio in the membrane was noted. The 25-hydroxycholesterol content in the membrane determined by HPLC did not increase. An increase in sphingomyelin and a decrease in phosphatidylethanolamine and acidic phospholipids in the membrane was noted. We suggest that the accumulation of intracellular calcium comes from both an increase of calcium influx and a decrease of (Ca(2+) + Mg2+)-ATPase activity, which may be the consequence of changes in membrane phospholipid composition.  相似文献   

10.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine greater than C18: I phosphatidylcholine greater than C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0 degrees C and 4 degrees C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23 degrees C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

11.
Small unilamellar liposomes containing carboxyfluorescein (CF) and composed of various unsaturated and saturated phospholipids with or without cholesterol were incubated in the presence of mouse serum at 37°C. Liposomes composed of egg L-α-phosphatidylcholine (PC), L-α-dioleoylphosphatidylcholine (DOPC) or sphingomyelin (SM) became rapidly permeable to entrapped CF but incorporation of cholesterol into such liposomes reduced CF leakage. Under similar conditions, CF leakage from cholesterol-free liposomes composed of saturated phospholipids of increasing fatty acid chain length was dependant on the liquid-crystalline phase transition temperature (Tc) of the phospholipid component. Thus, L-α-dilaureoylphos-phatidylcholine (DLPC), L-α-dimyristoyl phosphatidylcholine (DMPC) and L-α-dipalmitoylphosphatidylcholine (DPPC) with Tc's below or near the temperature of the incubation (37°C) released CF rapidly whereas L-α-diheptedecanoyl phosphatidylcholine (DHPC), L-α-distearoylphosphatidylcholine (DSPC) and hydrogenated egg PC (HPC) liposomes with Tc's above 37°C retained the dye quantitatively. After incorporation of cholesterol into liposomes composed of saturated phospholipids, CF release was reduced for DLPC and DMPC and increased for DPPC, DSPC, DHPC and HPC vesicles. Liposomes with or without cholesterol exhibiting greatest stability (in terms of CF retention) in the presence of serum were injected intravenously into mice and rates of clearance of quenched CF from the circulation measured. Observed clearance rates were linear and, when liposomes contained tritiated phospholipid, identical to those of the radiolabel suggesting retention of liposomal integrity in the intravascular space. However, half-lifes of liposomes ranging from 0.1 to 16 h did not correlate with the physical characteristics of their phospholipid component. After intraperitoneal injection, there was quantitative entry of quenched CF (stable liposomes) into the blood from which it was eliminated at rates corresponding to those observed after intravenous injection. These results suggest that solute retention by liposomes and their half-life in the circulation can be controlled by the appropriate manipulation of liposomal membrane fluidity and composition.  相似文献   

12.
Acid sphingomyelinase is a water-soluble, lysosomal glycoprotein that catalyzes the degradation of membrane-bound sphingomyelin into phosphorylcholine and ceramide. Sphingomyelin itself is an important component of the extracellular leaflet of various cellular membranes. The aim of the present investigation was to study sphingomyelin hydrolysis as a membrane-bound process. We analyzed the degradation of sphingomyelin by recombinant, highly purified acid sphingomyelinase in a detergent-free, liposomal assay system. In order to mimic the in vivo intralysosomal conditions as closely as possible a number of negatively charged, lysosomally occuring lipids including bis(monoacylglycero)phosphate and phosphatidylinositol were incorporated into substrate-carrying liposomes. Dolichol and its phosphate ester dolicholphosphate were also included in this study. Bis(monoacylglycero)phosphate and phosphatidylinositol were both effective stimulators of sphingomyelin hydrolysis. Dolichol and dolicholphosphate also significantly increased sphingomyelin hydrolysis. The influence of membrane curvature was investigated by incorporating the substrate into small (SUVs) and large unilamellar vesicles (LUVs) with varying mean diameter. Degradation rates were substantially higher in SUVs than in LUVs. Surface plasmon resonance experiments demonstrated that acid sphingomyelinase binds strongly to lipid bilayers. This interaction is significantly enhanced by anionic lipids such as bis(monoacylglycero)phosphate. Under detergent-free conditions only the sphingolipid activator protein SAP-C had a pronounced influence on sphingomyelin degradation in both neutral and negatively charged liposomes, catalyzed by highly purified acid sphingomyelinase, while SAP-A, -B and -D had no noticeable effect on sphingomyelin degradation.  相似文献   

13.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erthrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists as monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate adn sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

14.
1. Microsomes of rat liver and brain and mitochondria of rat liver and guinea-pig brown adipose tissue were solubilized with the nonionic detergent Lubrol-WX and the solubilized material was incorporated into liposomes of various phospholipid composition. In proteoliposomes thus formed the kinetics of arylsulphatase, glycerol-3-phosphate dehydrogenase, monoamine oxidase and acetylcholinesterase were measured. 2. It was shown that the apparent Km values of arylsulphatase and glycerol-3-phosphate dehydrogenase were higher in liposomes prepared with negatively charged phospholipids and lower in liposomes containing positively charged organic amines, as compared with th Km value of enzymes incorporated into liposomes prepared from phosphatidylcholine alone. The opposite was true for monoamine oxidase and acetylcholinesterase, i.e. enzymes possessing cationic substrates. Phospholipid composition did not essentially influence the activity of the enzymes extrapolated for infinite substrate concentration (V values). 3. As compared with proteoliposomes made from phosphatidylcholine, the binding constant (Ka) of 8-anilino-1-naphthalene sulphonate was higher when the vesicles contained acidic phospholipids or bis(hexadecanyl)phosphate and lower when they contained organic amines. 4. A correlation between changes of the surface potential calculated from Ka values of anilino-naphthalene sulphonate and variations in apparent Km values of the four enzymes under investigation indicates that the activity of membrane-bound enzymes may be modulated by charged phospholipids due to decreasing or increasing substrate concentration in the unstirred layer, as predicted from the Boltzmann distribution.  相似文献   

15.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine > C18 : 1 phosphatidylcholine > C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0°C and 4°C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23°C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

16.
Preincubation of rat liver microsomal vesicles at 37 degrees C in the presence of [3H]cholesterol/phospholipid liposomes results in a net transfer of cholesterol from liposomes to microsomal vesicles. This transfer follows first-order kinetics. For similar concentrations of the donor vesicles, rates of transfer are about 6-8 times lower with cholesterol/sphingomyelin liposomes compared with cholesterol/phosphatidylcholine liposomes. Also, transfer of cholesterol from cholesterol/sphingomyelin liposomes to microsomal vesicles reveals a larger activation energy than for the process from cholesterol/phosphatidylcholine liposomes. There is a significant correlation between the amount of liposomal cholesterol transferred to microsomal vesicles during preincubation and the increase found with acyl-CoA:cholesterol acyltransferase activity in these microsomes over their corresponding controls. If, however, liposomes made solely of phospholipids are substituted for the cholesterol/phospholipid liposomes in the preincubation system containing microsomal vesicles, then the acyl-CoA:cholesterol acyltransferase activity is decreased compared with the corresponding control system. Both sphingomyelin and phosphatidylcholine liposomes are equally effective in decreasing the enzyme activity. These results offer direct kinetic evidence for the positive correlation between cholesterol and sphingomyelin found in vivo in biological membranes.  相似文献   

17.
Multilameller liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome preparation. Liver uptake up encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides, regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

18.
The properties of multibilayered liposomes formed from mixtures of sphingomyelin and phosphatidylcholine in varying mole ratio (all containing one mole dicetylphosphate per 10 moles of phospholipids) have been studied. The principal findings are: (1) Over the range 0 to 1 mole fraction sphingomyelin the liposomes exhibit multibilayer structure as visualized by electron microscopy using negative staining. (2) The two phospholipids differ in their interaction with dicetylphosphate in a bilayer structure. In mixtures of the two the effect of sphingomyelin is dominant. (3) The ability of sphingomyelin to form osmotically active liposomes depends on its fatty acid's composition. (4) Liposomes of all mole fractions of sphingomyelin are osmotically active if the C24: 1 fatty acid content of sphingomyelin exceeds 10% of the total acyl residues. The degree of osmotic activity, however, depends upon the molar ratio between the two phospholipids. The highest initial rate of water permeability was found for lecithin liposomes. The maximal change of volume by osmotic gradients was obtained for liposomes composed of 1:1 lecithin to sphingomyelin (mole ratio). (5) Permeability to glucose increased with increasing lecithin mole fraction. (6) Liposomes composed of 1:1 lecithin to sphingomyelin have the largest aqueous volume per mole of phospholipid as measured by glucose trapping. (7) The osmotic fragility of liposomes made of sphingomyelin is higher than for those made of lecithin but the highest osmotic fragility was obtained for liposomes containing lecithin and sphingomyelin in 1:1 molar ratio. (8) When the temperature is abruptly lowered to about 2 degrees C, lipsomes formed from phosphatidylcholine release about 20% of trapped glucose during a transient increase in permeability. Liposomes containing 0.5 mole fraction sphingomyelin release about 30% of the trapped glucose under these conditions. Liposomes composed of sphingomyelin alone do not exhibit this phenomenon.  相似文献   

19.
Interaction of liposomes with human leukocytes in whole blood   总被引:1,自引:0,他引:1  
The uptake of multilamellar liposomes into human leukocytes in whole blood in vitro was evaluated on the basis of the cellular association of liposomal markers (3H-labelled cholesterol, lipid phase; [14C]inulin, aqueous phase). The entry of liposomes into human blood leukocytes was linear for 60 min and was mediated by a saturable mechanism displaying affinity constants of 0.28 +/- 0.17 and 0.16 +/- 0.05 mM liposomal lipid (means +/- S.E.) for liposomal lipid and aqueous phase markers, respectively. Amicon filtration analysis of incubation mixtures containing blood and liposomes (phosphatidylcholine:dicetyl phosphate:cholesterol, 70:20:10) showed that 34% of [14C]inulin was lost (neither liposome-associated nor cell-associated) after 60 min. By preincorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of the model aqueous phase marker inulin was reduced to 8% after 60 min, thus enhancing the drug carrier potential of liposomes in blood. As a consequence of their interaction with liposomes, the polymorphonuclear leukocytes in whole blood decreased in apparent buoyant density, while maintaining their viability. These results indicate that blood leukocytes in their natural milieu of whole blood are capable of interacting with, and taking up multilamellar liposomes.  相似文献   

20.
Liposomes survive exposure to biological fluids poorly, extruding trapped enzymes, drugs, or solutes upon interaction with serum or plasma constituents. We have quantified the disruptive effects of human serum on liposomes and have studied whether various modifications in their phospholipid composition might produce liposomes with an increased carrier potential for applications in vivo. Multilamellar liposomes (phosphatidylcholine 70:dicetyl phosphate 20: cholesterol 10) were prepared with 3H-labeled phosphatidylcholine as the lipid phase marker and [14C]inulin and horseradish peroxidase as aqueous phase markers. Gel exclusion chromatography showed that 32 ± 3% of [14C]inulin and 27 ± 7% of horseradish peroxidase were lost after 1 h incubation with 10% (v/v) human serum. Loss of aqueous solutes was reduced to 20 ± 5%/h and 17 ± 2%/h, respectively, after treatment with decomplemented serum (56°C, 30 min). Loss induced by serum was concentration and time dependent: to 57 ± 2% at 1 h and 67 ± 14% at 24 h, with 50% serum; plasma was slightly less perturbing whereas human serum albumin was not at all disruptive. By incorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of [14C]-inulin in the presence of 10% serum was reduced to 12 ± 4%/h; increasing the molar percentage of cholesterol to 35% also stabilized the lipid bilayers, reducing leakage to 20 ± 7%/h. Both small and large unilamellar vesicles could not be stabilized against serum-mediated leakage by the incorporation of sphingomyelin. The data suggest that cholesterol and sphingomyelin enhance liposomal integrity in the presence of serum or plasma and promise to yield enhanced survival of drug-laden lipid vesicles in biological fluids in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号