首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8(+) T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2x MVA.HIVA) (n=8) or two doses of placebo (2x placebo) (n=4). The second group received 2x pTHr.HIVA followed by one dose of MVA.HIVA (n=8) or 3x placebo (n=4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-gamma) ELISPOT (group mean, 210 spot-forming cells/10(6) cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2x MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-gamma ELISPOT assay, positive responses mainly mediated by CD4(+) T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2x MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4(+) T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8(+) T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1 beta. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees.  相似文献   

2.
Protective immunity against Mycobacterium tuberculosis depends on the generation of a T(H)1-type cellular immune response, characterized by the secretion of interferon-gamma (IFN-gamma) from antigen-specific T cells. The induction of potent cellular immune responses by vaccination in humans has proven difficult. Recombinant viral vectors, especially poxviruses and adenoviruses, are particularly effective at boosting previously primed CD4(+) and CD8(+) T-cell responses against a number of intracellular pathogens in animal studies. In the first phase 1 study of any candidate subunit vaccine against tuberculosis, recombinant modified vaccinia virus Ankara (MVA) expressing antigen 85A (MVA85A) was found to induce high levels of antigen-specific IFN-gamma-secreting T cells when used alone in bacille Calmette-Guerin (BCG)-naive healthy volunteers. In volunteers who had been vaccinated 0.5-38 years previously with BCG, substantially higher levels of antigen-specific IFN-gamma-secreting T cells were induced, and at 24 weeks after vaccination these levels were 5-30 times greater than in vaccinees administered a single BCG vaccination. Boosting vaccinations with MVA85A could offer a practical and efficient strategy for enhancing and prolonging antimycobacterial immunity in tuberculosis-endemic areas.  相似文献   

3.
Vaccination strategies involving priming with DNA and boosting with a poxvirus vector have emerged as a preferred combination for the induction of protective CD8 T cell immunity. Using IFN-gamma ELISPOT and a series of DNA plasmid, peptide, and modified vaccinia Ankara (MVA) vaccine combinations, we demonstrate that the DNA/MVA combination was uniquely able to enhance IFN-gamma secretion by Ag-specific CD8 T cells. However, CD8 T cell populations induced by DNA/MVA vaccination failed to show an enhanced capability to mediate protection in an IFN-gamma-independent influenza challenge model. The DNA/MVA vaccine strategy was also not unique in its ability to induce high numbers of CD8 T cells, with optimal strategies simply requiring the use of vaccine modalities that individually induce high numbers of CD8 T cells. These experiments argue that rivals to DNA/poxvirus vaccination strategies for the induction of optimal protective CD8 T cell responses are likely to emerge.  相似文献   

4.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

5.
Heterologous vaccination based on priming with a plasmid DNA vector and boosting with an attenuated vaccinia virus MVA recombinant, with both vectors expressing the Leishmania infantum LACK antigen (DNA-LACK and MVA-LACK), has shown efficacy conferring protection in murine and canine models against cutaneus and visceral leishmaniasis, but the immune parameters of protection remain ill defined. Here we performed by flow cytometry an in depth analysis of the T cell populations induced in BALB/c mice during the vaccination protocol DNA-LACK/MVA-LACK, as well as after challenge with L. major parasites. In the adaptive response, there is a polyfunctional CD4(+) and CD8(+) T cell activation against LACK antigen. At the memory phase the heterologous vaccination induces high quality LACK-specific long-term CD4(+) and CD8(+) effector memory cells. After parasite challenge, there is a moderate boosting of LACK-specific CD4(+) and CD8(+) T cells. Anti-vector responses were largely CD8(+)-mediated. The immune parameters induced against LACK and triggered by the combined vaccination DNA/MVA protocol, like polyfunctionality of CD4(+) and CD8(+) T cells with an effector phenotype, could be relevant in protection against leishmaniasis.  相似文献   

6.
Replication-deficient adenovirus and modified vaccinia virus Ankara (MVA) vectors expressing single pre-erythrocytic or blood-stage Plasmodium falciparum Ags have entered clinical testing using a heterologous prime-boost immunization approach. In this study, we investigated the utility of the same immunization regimen when combining viral vectored vaccines expressing the 42-kDa C terminus of the blood-stage Ag merozoite surface protein 1 and the pre-erythrocytic Ag circumsporozoite protein in the Plasmodium yoelii mouse model. We find that vaccine coadministration leads to maintained Ab responses and efficacy against blood-stage infection, but reduced secondary CD8(+) T cell responses against both Ags and efficacy against liver-stage infection. CD8(+) T cell interference can be minimized by coadministering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy in mice immunized against both Ags compared with just one. CD8(+) T cell interference (following MVA coadministration as a mixture) may be caused partly by a lack of physiologic space for high-magnitude responses against multiple Ags, but is not caused by competition for presentation of Ag on MHC class I molecules, nor is it due to restricted T cell access to APCs presenting both Ags. Instead, enhanced killing of peptide-pulsed cells is observed in mice possessing pre-existing T cells against two Ags compared with just one, suggesting that priming against multiple Ags may in part reduce the potency of multiantigen MVA vectors to stimulate secondary CD8(+) T cell responses. These data have important implications for the development of a multistage or multicomponent viral vectored malaria vaccine for use in humans.  相似文献   

7.
We characterized prime-boost vaccine regimens using heterologous and homologous vector and gene inserts. Heterologous regimens offer a promising approach that focuses the cell-mediated immune response on the insert and away from vector-dominated responses. Ad35-GRIN/ENV (Ad35-GE) vaccine is comprised of two vectors containing sequences from HIV-1 subtype A gag, rt, int, nef (Ad35-GRIN) and env (Ad35-ENV). MVA-CMDR (MVA-C), MVA-KEA (MVA-K) and MVA-TZC (MVA-T) vaccines contain gag, env and pol genes from HIV-1 subtypes CRF01_AE, A and C, respectively. Balb/c mice were immunized with different heterologous and homologous vector and insert prime-boost combinations. HIV and vector-specific immune responses were quantified post-boost vaccination. Gag-specific IFN-γ ELISPOT, intracellular cytokine staining (ICS) (CD107a, IFN-γ, TNF-α and IL-2), pentamer staining and T-cell phenotyping were used to differentiate responses to inserts and vectors. Ad35-GE prime followed by boost with any of the recombinant MVA constructs (rMVA) induced CD8+ Gag-specific responses superior to Ad35-GE-Ad35-GE or rMVA-rMVA prime-boost combinations. Notably, there was a shift toward insert-focus responses using heterologous vector prime-boost regimens. Gag-specific central and effector memory T cells were generated more rapidly and in greater numbers in the heterologous compared to the homologous prime-boost regimens. These results suggest that heterologous prime-boost vaccination regimens enhance immunity by increasing the magnitude, onset and multifunctionality of the insert-specific cell-mediated immune response compared to homologous vaccination regimens. This study supports the rationale for testing heterologous prime-boost regimens in humans.  相似文献   

8.
Protein-in-adjuvant formulations and viral-vectored vaccines encoding blood-stage malaria Ags have shown efficacy in rodent malaria models and in vitro assays against Plasmodium falciparum. Abs and CD4(+) T cell responses are associated with protective efficacy against blood-stage malaria, whereas CD8(+) T cells against some classical blood-stage Ags can also have a protective effect against liver-stage parasites. No subunit vaccine strategy alone has generated demonstrable high-level efficacy against blood-stage infection in clinical trials. The induction of high-level Ab responses, as well as potent T and B cell effector and memory populations, is likely to be essential to achieve immediate and sustained protective efficacy in humans. This study describes in detail the immunogenicity of vaccines against P. falciparum apical membrane Ag 1 in rhesus macaques (Macaca mulatta), including the chimpanzee adenovirus 63 (AdCh63), the poxvirus modified vaccinia virus Ankara (MVA), and protein vaccines formulated in Alhydrogel or CoVaccine HT adjuvants. AdCh63-MVA heterologous prime-boost immunization induces strong and long-lasting multifunctional CD8(+) and CD4(+) T cell responses that exhibit a central memory-like phenotype. Three-shot (AdCh63-MVA-protein) or two-shot (AdCh63-protein) regimens induce memory B cells and high-titer functional IgG responses that inhibit the growth of two divergent strains of P. falciparum in vitro. Prior immunization with adenoviral vectors of alternative human or simian serotype does not affect the immunogenicity of the AdCh63 apical membrane Ag 1 vaccine. These data encourage the further clinical development and coadministration of protein and viral vector vaccine platforms in an attempt to induce broad cellular and humoral immune responses against blood-stage malaria Ags in humans.  相似文献   

9.
Many candidate HIV vaccines are designed to primarily elicit T cell responses. Although repeated immunization with the same vaccine boosts Ab responses, the benefit for T cell responses is ill defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T cell responses, but increases gp140 Ab responses 10-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8(+) T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4(+) and CD8(+) T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination.  相似文献   

10.
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.  相似文献   

11.
Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to elicit antigen-specific cellular immune responses. Rare serotype rAd vectors have also been constructed to circumvent preexisting anti-Ad5 immunity and to facilitate the development of novel heterologous rAd prime-boost regimens. Here we show that rAd5, rAd26, and rAd48 vectors elicit qualitatively distinct phenotypes of cellular immune responses in rhesus monkeys and can be combined as potent heterologous prime-boost vaccine regimens. While rAd5-Gag induced primarily gamma interferon-positive (IFN-gamma(+)) and IFN-gamma(+)/tumor necrosis factor alpha(+) (TNF-alpha(+)) T-lymphocyte responses, rAd26-Gag and rAd48-Gag induced higher proportions of interleukin-2(+) (IL-2(+)) and polyfunctional IFN-gamma(+)/TNF-alpha(+)/IL-2(+) T-lymphocyte responses. Priming with the rare serotype rAd vectors proved remarkably effective for subsequent boosting with rAd5 vectors. These data demonstrate that the rare serotype rAd vectors elicited T-lymphocyte responses that were phenotypically distinct from those elicited by rAd5 vectors and suggest the functional relevance of polyfunctional CD8(+) and CD4(+) T-lymphocyte responses. Moreover, qualitative differences in cellular immune responses may prove critical in determining the overall potency of heterologous rAd prime-boost regimens.  相似文献   

12.
Sterile immunity can be provided against the pre-erythrocytic stages of malaria by IFN-gamma-secreting CD8(+) T cells that recognize parasite-infected hepatocytes. In this study, we have investigated the use of attenuated fowlpox virus (FPV) strains as recombinant vaccine vectors for eliciting CD8(+) T cells against Plasmodium berghei. The gene encoding the P. berghei circumsporozoite (PbCS) protein was inserted into an FPV vaccine strain licensed for use in chickens, Webster's FPV, and the novel FPV vaccine strain FP9 by homologous recombination. The novel FP9 strain proved more potent as a vaccine for eliciting CD8(+) T cell responses against the PbCS Ag. Sequential immunization with rFP9 and recombinant modified vaccinia virus Anakara (MVA) encoding the PbCS protein, administered by clinically acceptable routes, elicited potent CD8(+) T cell responses against the PbCS protein. This immunization regimen elicited substantial protection against a stringent liver-stage challenge with P. berghei and was more immunogenic and protective than DNA/MVA prime/boost immunization. However, further improvement was not achieved by sequential (triple) immunization with a DNA vaccine, FP9, and MVA.  相似文献   

13.
In animals, effective immune responses against malignancies and against several infectious pathogens, including malaria, are mediated by T cells. Here we show that a heterologous prime-boost vaccination regime of DNA either intramuscularly or epidermally, followed by intradermal recombinant modified vaccinia virus Ankara (MVA), induces high frequencies of interferon (IFN)-gamma-secreting, antigen-specific T-cell responses in humans to a pre-erythrocytic malaria antigen, thrombospondin-related adhesion protein (TRAP). These responses are five- to tenfold higher than the T-cell responses induced by the DNA vaccine or recombinant MVA vaccine alone, and produce partial protection manifest as delayed parasitemia after sporozoite challenge with a different strain of Plasmodium falciparum. Such heterologous prime-boost immunization approaches may provide a basis for preventative and therapeutic vaccination in humans.  相似文献   

14.
Previous studies have shown that vaccination and boosting of rhesus macaques with attenuated vesicular stomatitis virus (VSV) vectors encoding Env and Gag proteins of simian immunodeficiency virus-human immunodeficiency virus (SHIV) hybrid viruses protect rhesus macaques from AIDS after challenge with the highly pathogenic SHIV 89.6P (23). In the present study, we compared the effectiveness of a single prime-boost protocol consisting of VSV vectors expressing SHIV Env, Gag, and Pol proteins to that of a protocol consisting of a VSV vector prime followed with a single boost with modified vaccinia virus Ankara (MVA) expressing the same SHIV proteins. After challenge with SHIV 89.6P, MVA-boosted animals controlled peak challenge viral loads to less than 2 x 10(6) copies/ml (a level significantly lower than that seen with VSV-boosted animals and lower than those reported for other vaccine studies employing the same challenge). MVA-boosted animals have shown excellent preservation of CD4(+) T cells, while two of four VSV-boosted animals have shown significant loss of CD4(+) T cells. The improved protection in MVA-boosted animals correlates with trends toward stronger prechallenge CD8(+)-T-cell responses to SHIV antigens and stronger postchallenge SHIV-neutralizing antibody production.  相似文献   

15.
Salmonella enterica serovar Typhi (S. typhi) strain Ty21a remains the only licensed attenuated typhoid vaccine. Despite years of research, the identity of the protective immunological mechanisms elicited by immunization with the Ty21a typhoid vaccine remains elusive. The present study was designed to characterize effector T cell responses in volunteers immunized with S. typhi strain Ty21a typhoid vaccine. We determined whether immunization with Ty21a induced specific CTL able to lyse S. typhi-infected cells and secrete IFN-gamma, a key effector molecule against intracellular pathogens. We measured the functional activity of these CTL by a (51)Cr-release assay using 8-day restimulated PBMC from Ty21a vaccinees as effector cells and S. Typhi-infected autologous PHA-activated PBMC as target cells. Most vaccinees exhibited consistently increased CD8-mediated lysis of targets by postimmunization PBMC when compared with preimmunization levels. We also developed an IFN-gamma ELISPOT assay to quantify the frequency of IFN-gamma spot-forming cells (SFC) in PBMC from Ty21a vaccinees using an ex vivo system. Significant increases in the frequency of IFN-gamma SFC following immunization (mean +/- SD, 393 +/- 172; range 185-548 SFC/10(6) PBMC; p = 0.010), as compared with preimmunization levels, were observed. IFN-gamma was secreted predominantly by CD8(+) T cells. A strong correlation was recorded between the cytolytic activity of CTL lines and the frequency of IFN-gamma SFC (r(2) = 0.910, p < 0.001). In conclusion, this work constitutes the first evidence that immunization of volunteers with Ty21a elicits specific CD8(+) CTL and provides an estimate of the frequency of CD8(+) IFN-gamma-secreting cells induced by vaccination.  相似文献   

16.
Natural immunity to malaria is characterized by low level CD4 T cell reactivity detected by either lymphoproliferation or IFN-gamma secretion. Here we show a doubling in the detection rate of responders to the carboxyl terminus of circumsporozoite protein (CS) of Plasmodium falciparum by employing three T cell assays simultaneously: rapid IFN-gamma secretion (ex vivo ELISPOT), IFN-gamma secretion after reactivation of memory T cells and expansion in vitro (cultured ELISPOT), and lymphoproliferation. Remarkably, for no individual peptide did a positive response for one T cell effector function correlate with any other. Thus these CS epitopes elicited unique T cell response patterns in malaria-exposed donors. Novel or important epitope responses may therefore be missed if only one T cell assay is employed. A borderline correlation was found between anti-CS Ab levels and proliferative responses, but no correlation was found with ex vivo or cultured IFN-gamma responses. This suggested that the proliferating population, but not the IFN-gamma-secreting cells, contained cells that provide help for Ab production. The data suggest that natural immunity to malaria is a complex function of T cell subgroups with different effector functions and has important implications for future studies of natural T cell immunity.  相似文献   

17.
Rapid development of T cell memory   总被引:2,自引:0,他引:2  
Prime-boost immunization is a promising strategy for inducing and amplifying pathogen- or tumor-specific memory CD8 T cell responses. Although expansion of CD8 T cell populations following the second Ag dose is integral to the prime-boost strategy, it remains unclear when, after priming, memory T cells become competent to proliferate. In this study, we show that Ag-specific CD8 T cells with the capacity to undergo extensive expansion are already present at the peak of the primary immune response in mice. These early memory T cells represent a small fraction of the primary immune response and, at early time points, their potential to proliferate is obscured by large effector T cell populations that rapidly clear Ag upon reimmunization. With sufficient Ag boosting, however, secondary expansion of these memory cells can be induced as early as 5-7 days following primary immunization. Importantly, both early and delayed boosting result in similar levels of protective immunity to subsequent pathogen challenge. Early commitment and differentiation of memory T cells during primary immunization suggest that a short duration between priming and boosting is feasible, providing potential logistic advantages for large-scale prime-boost vaccination of human populations.  相似文献   

18.
Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 10(4) PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 10(7) PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8(+) T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8(+) T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination Flu/MVA in prime-booster immunization regimens is an effective vaccination approach to generate cellular immune responses to HIV antigens at sites critical for protective responses.  相似文献   

19.
The generation of memory lymphocytes is one of the hallmarks of the specific immune response. The CD4(+) T cell response is of critical importance in maintaining long-term protective immunity after clearing many infections. However, accurate characterization of these memory CD4(+) T cells has relied mainly on mouse studies and is poorly understood in humans. We have detected and counted epitope-specific populations of CD4(+) memory cells in patients who have cleared hepatitis C virus. The kinetics of the recall response and the expression of the chemokine receptor CCR7 suggested the presence of distinct populations. A population of memory cells measured in an ex vivo IFN-gamma ELISPOT assay steadily declined after viral clearance. However, memory CD4(+) T cells only characterized after short-term culture with Ag and IL-2, and, recognizing the same epitopes, developed into a long-term stable population. Depletion of CCR7(+) cells from PBMCs markedly reduced the responses in the culture-positive population while having little effect on the ex vivo responses. The demonstration of these key memory subsets in man opens the way to defining their role in protective immune responses.  相似文献   

20.
We evaluated the effect of immunization with dendritic cells (DCs) pulsed with alpha-galactosylceramide (alphaGalCer) and listeriolysin O (LLO) 91-99 peptide, a dominant cytotoxic T lymphocyte (CTL) epitope of Listeria monocytogenes by observing the responses of specific CD8(+) T cells and in vivo CTL activity. DCs were pulsed with various combinations of alphaGalCer and LLO91-99 peptide and administered to BALB/c mice. Immunization with DCs pulsed with alphaGalCer and LLO91-99 at priming phase and with DCs pulsed with LLO91-99 alone at boosting phase induced stronger in vivo CTL activity, reduced the bacterial load in spleens of Listeria-challenged mice and augmented CD62L(+) CD8(+) central memory T cells compared with other immunization protocols. The blockade of interferon-gamma (IFN-gamma) at boosting phase reversed the induction of CD8(+) central memory T cells and reduced the bacterial load in spleens of Listeria-challenged mice immunized with DCs pulsed with alphaGalCer and LLO91-99 at both phases, suggesting that alphaGalCer at boosting phase has deleterious effects through IFN-gamma production. These results indicate that immunization with DCs pulsed with CTL epitope peptide together with alphaGalCer at priming phase, but not at boosting phase, is feasible for eliciting a specific CTL activity and protective immunity against infection of intracellular bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号