首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some strains of Streptococcus suis possess a type II restriction-modification (RM) system, whose genes are thought to be inserted into the genome between purH and purD from a foreign source by illegitimate recombination. In this study, we characterized the purHD locus of the S. suis genomes of 28 serotype reference strains by DNA sequencing. Four strains contained the RM genes in the locus, as described before, whereas 11 strains possessed other genetic regions of seven classes. The genetic regions contained a single gene or multiple genes that were either unknown or similar to hypothetical genes of other bacteria. The mutually exclusive localization of the genetic regions with the atypical G+C contents indicated that these regions were also acquired from foreign sources. No transposable element or long-repeat sequence was found in the neighboring regions. An alignment of the nucleotide sequences, including the RM gene regions, suggested that the foreign regions were integrated by illegitimate recombination via short stretches of nucleotide identity. By using a thermosensitive suicide plasmid, the RM genes were experimentally introduced into an S. suis strain that did not contain any foreign genes in that locus. Integration of the plasmid into the S. suis genome did not occur in the purHD locus but occurred at various chromosomal loci, where there were 2 to 10 bp of nucleotide identity between the chromosome and the plasmid. These results suggest that various foreign genes described here were incidentally integrated into the same locus of the S. suis genome.  相似文献   

2.
We have developed a transformation system for the yeast Candida utilis. A novel strategy was applied to construct the transformation system, since auxotrophic mutants which could be used as hosts for transformation are not available. A gene encoding the ribosomal protein L41 was cloned from C. utilis, which is sensitive to cycloheximide, and used as a marker gene conferring cycloheximide resistance after modification of its amino acid sequence. The marker gene was constructed by substitution of the proline codon at position 56 with the glutamine codon by in vitro mutagenesis, as it had been reported previously that the 56th amino acid residue of L41 is responsible for the cycloheximide sensitivity of various organisms (S. Kawai, S. Murao, M. Mochizuki, I. Shibuya, K. Yano, and M. Takagi, J. Bacteriol. 174:254-262 1992). The ribosomal DNA (i.e., DNA coding for rRNA) of C. utilis was also cloned and used as a multiple-copy target for the integration of vector DNA into the genome, which resulted in a high transformation efficiency. Transformants were obtained by electroporation with a maximum efficiency of approximately 1,400 transformants per 1 microgram of linearized DNA carrying the gene for cycloheximide resistance and part of the ribosomal DNA. No transformants were obtained with intact plasmids. Multiple copies of the linearized plasmid were integrated into the host chromosome by homologous recombination. Southern analysis of the transformants in which vector DNA was integrated at the L41 gene locus indicated that there are two copies of gene for the L41 protein per cell, suggesting that C. utilis is diploid. Transformants were obtained from a variety of C. utilis strains, indicating that this method is applicable to the transformation of other C. utilis strains, even though there is significant heterogeneity in chromosomal karyotypes among these strains.  相似文献   

3.
4.
《Gene》1999,227(1):21-31
The expression of foreign genes in transgenic animals is generally unpredictable as transgenes are integrated at random after pro-nuclear injection into fertilized oocytes. In many cases, transgene expression is inhibited by neighbouring chromatin structures or by the repeated nature of the multiple transgene copies present at the integration site. A strategy involving homologous and site-specific recombination has been devised by which single copies of a foreign gene can be inserted specifically into the locus of a highly expressed gene. As a first step, a loxP recombination target site is introduced by homologous recombination into a predetermined gene locus such that the loxP sequence is placed next to the promoter region and replaces the translational initiation signal. In a subsequent site-specific recombination reaction, a gene of interest can be integrated into the pre-existing loxP site. This biphasic recombination strategy was used to integrate a luciferase reporter gene into the locus of the murine β-casein gene in embryonic stem cells.  相似文献   

5.
The transformation of Aspergillus oryzae has been achieved with a plasmid carrying the Aspergillus nidulans argB gene coding for ornithine carbamoyltransferase (OCTase). The frequency of transformation was relatively low (0.7 transformants/μg DNA) but the transformed phenotype was extremely stable for many generations without selective pressure.

Southern blot analysis revealed that transformation had occurred by integration of multiple tandem copies of plasmid DNA into the host genome through non-homologous recombination. There was no evidence of the existence of free plasmid in the transformants. The number of integrated copies of the plasmid ranged from 15 to 60. The specific activity of OCTase in the cell- free extract was proportional to the copy number of the plasmid, indicating that most of the integrated argB gene was expressed.  相似文献   

6.
Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.  相似文献   

7.
8.
J G Williams  A A Szalay 《Gene》1983,24(1):37-51
The blue-green alga, Synechococcus R2, is transformed to antibiotic resistance by chimeric DNA molecules consisting of Synechococcus R2 chromosomal DNA linked to antibiotic-resistance genes from Escherichia coli. Chimeric DNA integrates into the Synechococcus R2 chromosome by homologous recombination. The efficiency of transformation, as well as the stability of integrated foreign DNA, depends on the position of the foreign genes relative to Synechococcus R2 DNA in the chimeric molecule. When the Synechococcus R2 DNA fragment is interrupted by foreign DNA, integration occurs through replacement of chromosomal DNA by homologous chimeric DNA containing the foreign insert; transformation is efficient and the foreign gene is stable. Mutagenesis in some cases attends integration, depending on the site of insertion. Foreign DNA linked to the ends of Synechococcus R2 DNA in a circular molecule, however, integrates less efficiently. Integration results in duplicate copies of Synechococcus R2 DNA flanking the foreign gene and the foreign DNA is unstable. Transformation in Synechococcus R2 can be exploited to modify precisely and extensively the genome of this photosynthetic microorganism.  相似文献   

9.
Generating a high yield of recombinant protein is a major goal when expressing a foreign gene in any expression system. In the methylotrophic yeast Pichia pastoris , a common means of achieving this end is to select for transformants containing multiple integrated copies of an expression vector by plating them on high levels of a selectable marker drug followed by screening for rare colonies with multiple copies. We describe a more convenient method to select for such clones. Using Zeocin-resistance-based vectors, we demonstrate that strains transformed with only one or a few vector copies can, long after transformation, be subjected to further selection at high levels of drug. This resulted in the frequent selection of clones containing increased copy numbers of the vector. This posttransformational vector amplification (PTVA) process resulted in strains containing multiple head-to-tail copies of the entire vector integrated at a single locus in the genome. Of our PTVA selected clones, 40% showed a three- to fivefold increase in vector copy number. So-called 'jackpot' clones with >10 copies of the expression vector represented 5–6% of selected clones and had a proportional increase in recombinant protein.  相似文献   

10.
Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to rescue a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.  相似文献   

11.
Development of a cloning system in Mycoplasma pulmonis   总被引:4,自引:0,他引:4  
G G Mahairas  C Jian  F C Minion 《Gene》1990,93(1):61-66
A system suitable for recombinant DNA manipulation in mycoplasmas was developed using the cloned antibiotic-resistance genes of Tn4001 and Tn916. An integrative plasmid containing one of the resistance markers was inserted into the genome of Mycoplasma pulmonis to form a recipient strain. This was accomplished by transformation and homologous recombination between chromosomal DNA sequences cloned onto the integrative plasmid. A second vector, the cloning vector, containing the same plasmid replicon and alternate resistance marker, carried cloned foreign DNA. When transformed into mycoplasmal recipients, homologous recombination between plasmid sequences resulted in integration of the cloning vector and foreign DNA. A Brucella abortus gene coding for a 31-kDa protein and the P1 structural gene and operon from Mycoplasma pneumoniae were introduced to examine the feasibility of developing mycoplasma as cloning hosts. Recombinant plasmids as large as 20 kb were inserted into M. pulmonis, and the integrated foreign DNA was stably maintained. The maximum size of clonable DNA was not determined, but plasmids larger than 22 kb have not been transformed into mycoplasmas using polyethylene glycol. Also the size of genome (800-1200 kb) may affect the stability of larger inserts of foreign DNA. This system is applicable to any mycoplasma capable of transformation, homologous recombination and expression of these resistance markers. Because of their lack of a cell wall, mycoplasmas may be useful cloning hosts for membrane or excreted protein genes from other sources.  相似文献   

12.
The bacterial transposable element Tn5 was observed to undergo high-frequency sequence inversion when integrated into the herpes simplex virus type 1 (HSV-1) genome. Deletion analysis of the IS50 elements through which this recombination event occurred demonstrated the absence of cis-acting signals involved in the inversion process. Several observations suggested an intimate association of the recombination mechanism with HSV-1 DNA replication, including the ability of the seven viral genes that are essential for HSV-1 DNA synthesis to mediate Tn5 inversion in the absence of any other viral functions. Comparable results were obtained by using duplicate copies of the L-S junction of the HSV-1 genome. Thus inversion of the L and S components of the HSV-1 genome during productive infection does not appear to be a site-specific process, but rather is the result of generalized recombination mediated by the complex of gene products that replicate the viral DNA.  相似文献   

13.
We have developed an efficient transformation system based on the use of polyethylene glycol and CaCl2 for the biocontrol agents, Trichoderma spp. Transformation was obtained with the plasmid pAN7-1, carrying a bacterial hygromycin-resistance gene as a selectable marker, under the control of Aspergillus nidulans heterologous expression signals. The system described here yielded 200-800 transformants per microgram of DNA. Transformants contained several copies of the plasmid integrated into their genome, apparently at the same site in the different transformants analysed. Stability of the transformants was achieved by inserting a 2.4kb homologous DNA fragment into pAN7-1. Southern blot analysis indicated that integration in the stable transformants occurs through non-homologous recombination.  相似文献   

14.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin ( oriA ). Transformants were recovered only with the plasmid containing oriA , and all transformants contained an integrated plasmid copy at oriA , suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

15.
Characterization of endogenous ecotropic Akv proviruses in DNA of low and high leukemic mouse strains revealed the presence of one to six copies of the Akv genome per haploid genome equivalent integrated in the germ line. Low leukemic strains analyzed so far contained only one complete copy of the Akv proviral DNA. The site of integration varied among strains, although genetically related strains often carried the Akv proviral gene in the same chromosomal site. The different substrains of the AKR mouse displayed the presence of variable numbers (two to six) of Akv genomes. In all substrains one Akv genome was present in an identical chromosomal site; this locus probably comprised the progenitor genome. Closely related substrains had several Akv proviral DNAs integrated in common sites. The accumulation of Akv genomes in the germ line of the AKR/FuRdA strain is likely the result of independent integration events, since backcross studies with the Akv-negative 129 strain showed random segregation of all six proviral loci. The AKR/Cnb strain carried a recombinant provirus in the germ line. This provirus resembled in structure the AKR mink cell focus-forming viruses, which are generated by somatic recombination during leukemogenesis. Therefore, the germ-line amplification of Akv proviral DNAs occurs most likely through infection of embryonic cells by circulating virus.  相似文献   

16.
We have devised a two-step procedure by which multiple copies of a heterologous gene can be consecutively integrated into the Bacillus subtilis 168 chromosome without the simultaneous integration of markers (antibiotic resistance). The procedure employs the high level of transformability of B. subtilis 168 strains and makes use of the observation that thymine-auxotrophic mutants of B. subtilis are resistant to the folic acid antagonist trimethoprim (Tmpr), whereas thymine prototrophs are sensitive. First, a thymine-auxotrophic B. subtilis mutant is transformed to prototrophy by integration of a thymidylate synthetase-encoding gene at the desired chromosomal locus. In a second step, the mutant strain is transformed with a DNA fragment carrying the heterologous gene and Tmpr colonies are selected. Approximately 5% of these appear to be thymine auxotrophic and contain a single copy of the heterologous gene at the chromosomal locus previously carrying the thymidylate synthetase-encoding gene. Repetition of the procedure at different locations on the bacterial chromosome allows the isolation of strains carrying multiple copies of the heterologous gene. The method was used to construct B. subtilis strains carrying one, two, and three copies of the Bacillus stearothermophilus branching enzyme gene (glgB) in their genomes.  相似文献   

17.
A new concept for viral oncogenesis is presented which is based on experimental work on the chromosomal integration of adenovirus DNA into mammalian genomes. The mechanism of adenovirus DNA integration is akin to non-sequence-specific insertional recombination in which patch homologies between the recombination partners are frequently observed. This reaction has been imitated in a cell-free system by using nuclear extracts from hamster cells and partly purified fractions derived from them. As a consequence of foreign DNA insertion into the mammalian genome, the foreign DNA is extensively de novo methylated in specific patterns, presumably as part of a mammalian host cell defense mechanism against inserted foreign DNA which can be permanently silenced in this way. A further corollary of foreign (adenovirus or bacteriophage λ) DNA integration is seen in extensive changes in cellular DNA methylation patterns at sites far remote from the locus of insertional recombination. Repetitive cellular, retrotransposon-like sequences are particularly, but not exclusively, prone to these increases in DNA methylation. It is conceivable that these changes in DNA methylation are a reflection of a profound overall reorganization process in the affected genomes. Could these alterations significantly contribute to the transformation events during viral or other types of oncogenesis? These sequelae of foreign DNA integration into established mammalian genomes will have to be critically considered when interpreting results obtained with transgenic, knock-out, and knock-in animals and when devising schemes for human somatic gene therapy.The interpretation of de novo methylation as a cellular defense mechanism has prompted investigations on the fate of food-ingested foreign DNA. The gastrointestinal (GI) tract provides a large surface for the entry of foreign DNA into any organism. As a tracer molecule, bacteriophage M13 DNA has been fed to mice. Fragments of this DNA can be found in small amounts (about 1 % of the administered DNA) in all parts of the intestinal tract and in the feces. Furthermore, M13 DNA can be traced in the columnar epithelia of the intestine, in Peyer's plaque leukocytes, in peripheral white blood cells, in spleen, and liver. Authentic M13 DNA has been recloned from total spleen DNA. If integrated, this DNA might elicit some of the described consequences of foreign DNA insertion into the mammalian genome. Food-ingested DNA will likely infiltrate the organism more frequently than viral DNA.  相似文献   

18.
We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination.  相似文献   

19.
Thaumatin, a 22-kDa protein containing eight disulfide bonds, is secreted by the filamentous fungus Aspergillus awamori at levels which are dependent upon the extent of overexpression of protein disulfide isomerase (PDIA). Additional copies of the PDIA-encoding gene pdiA were introduced into a strain of A. awamori that expresses a cassette encoding thaumatin. Transformants with different levels of pdiA mRNA and measured PDIA levels were chosen for examination of the impact that PDIA levels had on thaumatin secretion. The secretion of two native proteins, alpha-amylase and acid phosphatase, was also examined in relation to varying levels of PDIA. Over a range of PDIA levels of 1-8, relative to the native level in strains with just one copy of the pdiA gene, the fraction of alpha-amylase and acid phosphatase in the total secreted protein was unaffected. In contrast, a peak level of thaumatin, about 5-fold higher than in the strain with one copy of pdiA, was found in strains with a relative PDIA level of between two and four. Improved thaumatin production was confirmed in 5-1 fermenters using a strain of A. awamori with six pdiA gene copies, containing 3.2-fold higher levels of PDIA than wild-type strains.  相似文献   

20.
Induction of Ti plasmid virulence (vir) gene expression during the early stages of plant cell transformation by Agrobacterium tumefaciens initiates the generation of several T-DNA-associated molecular events: (1) site-specific nicks at T-DNA border sequences (border nicks); (2) free, unipolar, linear, single-stranded T-DNA copies (T-strands); and (3) double-stranded, circular T-DNA molecules (T-circles). The first two T-DNA products have been detected in A. tumefaciens, while T-circles have only been detected following Escherichia coli transformation or transduction. The relationship between the three events has not been evaluated since the genesis of T-circles in A. tumefaciens has not been clarified. Evidence is presented here that T-circles are not an artefact of E. coli transformation, but are present as free, double-stranded molecules in A. tumefaciens resulting from site-specific reciprocal recombination between the left and right 25-base-pair border sequences that flank the T-DNA. Furthermore, the frequency of T-circle formation correlates with the frequency of formation of its reciprocal product, the Ti plasmid deleted in the T-DNA region. Several types of recombinant T-DNA circles arise after activation of vir gene expression, a major class representing precise site-specific recombination between both T-DNA borders, and a minor class representing recombination events either utilizing only one T-DNA border sequence and other Ti plasmid sequences, or utilizing only Ti plasmid sequences (i.e. no T-DNA borders). Nucleotide sequence analyses show that when one (nicked) border recombines with other Ti plasmid sequences, a small stretch (16 to 17 base-pairs) of local homology suffices to allow crossing over.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号