首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The cell membrane potential of cultured Chinese hamster cells is known to increase at the start of the S phase. The putative role of the cell membrane potential as a regulator of cell proliferation was examined by following the cell cycle traverse of synchronized Chinese hamster cells in the presence or absense of high exogenous levels of potassium. An increase in external potassium levels results in a depressed membrane potential and a reduced rate of cell proliferation. A potassium concentration of 115 mM was used in experiments with synchronized cells since at that level cell proliferation is almost completely halted, recovery of growth is rapid and complete, and the membrane potential is reduced to a level well below that normally found in cells in the G1 phase. A mitotic population was divided into four aliquots and plated in either control medium or medium containing 115 mM K+. Cells placed directly into high K+ medium were retarded in their exit from mitosis and displayed a delayed and abnormal entry into the S phase. If control medium was added after two hours, cell cycle traverse was normal, but delayed by two hours compared to control cells. If the mitotic cells were plated directly into control medium and two hours later were shifted to high K+ medium, the cells entered the S phase in the absence of the normally observed increase in membrane potential and proceeded to the next mitosis normally. It was concluded that the increase in membrane potential observed at the start of the S phase in isolated synchronized cells is not a requirement for the initiation of DNA synthesis. In addition, sensitivity to the high potassium regimen was found at two different times during the cell cycle. In one case, cells were impeded in their transit through mitosis. Such cells displayed an altered chromosome structure which may account for the partial mitotic block. In the second case, synchronized cells displayed a sensitivity to the high potassium regimen in early G1 which appeared to be separate from the block in mitosis and independent of a change in the membrane potential.  相似文献   

2.
Lopus M  Panda D 《The FEBS journal》2006,273(10):2139-2150
Sanguinarine has been shown to inhibit proliferation of several types of human cancer cell including multidrug-resistant cells, whereas it has minimal cytotoxicity against normal cells such as neutrophils and keratinocytes. By analyzing the antiproliferative activity of sanguinarine in relation to its effects on mitosis and microtubule assembly, we found that it inhibits cancer cell proliferation by a novel mechanism. It inhibited HeLa cell proliferation with a half-maximal inhibitory concentration of 1.6 +/- 0.1 microM. In its lower effective inhibitory concentration range, sanguinarine depolymerized microtubules of both interphase and mitotic cells and perturbed chromosome organization in mitotic HeLa cells. At concentrations of 2 microM, it induced bundling of interphase microtubules and formation of granular tubulin aggregates. A brief exposure of HeLa cells to sanguinarine caused irreversible depolymerization of the microtubules, inhibited cell proliferation, and induced cell death. However, in contrast with several other microtubule-depolymerizing agents, sanguinarine did not arrest cell cycle progression at mitosis. In vitro, low concentrations of sanguinarine inhibited microtubule assembly. At higher concentrations (> 40 microM), it altered polymer morphology. Further, it induced aggregation of tubulin in the presence of microtubule-associated proteins. The binding of sanguinarine to tubulin induces conformational changes in tubulin. Together, the results suggest that sanguinarine inhibits cell proliferation at least in part by perturbing microtubule assembly dynamics.  相似文献   

3.
We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.  相似文献   

4.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

5.
Airway smooth muscle (ASM) hypertrophy and hyperplasia are characteristics of asthma that lead to thickening of the airway wall and obstruction of airflow. Very little is known about mechanisms underlying ASM remodeling, but in vascular smooth muscle, it is known that progression of atherosclerosis depends on the balance of myocyte proliferation and cell death. Small heat shock protein 27 (Hsp27) is antiapoptotic in nonmuscle cells, but its role in ASM cell survival is unknown. Our hypothesis was that phosphorylation of Hsp27 may regulate airway remodeling by modifying proliferation, cell survival, or both. To test this hypothesis, adenoviral vectors were used to overexpress human Hsp27 in ASM cells. Cells were infected with empty vector (Ad5) or wild-type Hsp27 (AdHsp27 WT), and proliferation and death were assessed. Overexpressing Hsp27 WT caused a 50% reduction in serum-induced proliferation and increased cell survival after exposure to 100 microM hydrogen peroxide (H(2)O(2)) compared with mock-infected controls. Overexpression studies utilizing an S15A, S78A, and S82A non-phosphorylation mutant (AdHsp27 3A) and an S15D, S78D, and S82D pseudo-phosphorylation mutant (AdHsp27 3D) showed phosphorylation of Hsp27 was necessary for regulation of ASM proliferation, but not survival. Hsp27 provided protection against H(2)O(2)-induced cytotoxicity by upregulating cellular glutathione levels and preventing necrotic cell death, but not apoptotic cell death. The results support the notion that ASM cells can be stimulated to undergo proliferation and death and that Hsp27 may regulate these processes, thereby contributing to airway remodeling in asthmatics.  相似文献   

6.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

7.
We have previously demonstrated that arginine deiminase inhibits the proliferation of vascular endothelial cells, but the mechanisms leading to growth inhibition have remained unclear. We report here that low concentrations of arginine deiminase purified from Mycoplasma arginini inhibit proliferation of various cultured cells by arresting the cell cycle in G(1) and/or S phase with higher arginine deiminase concentrations leading to subsequent apoptosis. Our results demonstrate that arginine deiminase inhibits cell proliferation not only by depletion of arginine, but also by mechanisms involving the cell cycle and death signals.  相似文献   

8.
Xiao Z  Yang M  Lv Q  Wang W  Deng M  Liu X  He Q  Chen X  Chen M  Fang L  Xie X  Hu J 《Journal of cellular biochemistry》2011,112(9):2257-2265
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.  相似文献   

9.
There are few data available on cell cycle events that occur when proliferation of normal cells in culture is curtailed due to “natural aging” of the culture conditions. Stathmokinetic and cytofluorometry studies were performed on PHA-stimulated human lymphocyte cultures for eight consecutive days. Cell proliferation peaked on day 5 and then gradually decreased. Percent labeled mitosis curves performed each day demonstrated that, for those cells which progressed to mitosis, the cell cycle time remained constant at 18 ± 1 hour throughout the entire period of culture. However when the fate of all cells pulse-labeled with 3H-thymidine (S phase cells) was followed daily, only 64 ± 5% of labeled cells reached mitosis on day 3 and <20% on day 6. When the growth fraction was estimated by standard methods (with the labeling index) and used to predict future cell counts in the culture, proliferation was greatly overestimated; but after correcting the growth fraction for labeled cells not reaching mitosis, proliferation was accurately predicted by a newly derived “dividing fraction.” Flow cytofluorometry confirmed accumulation of cells in S and G2 + M phases, and mitotic indices ruled out accumulation in M phase. Assessment of non-viable cells with cytofluorometry demonstrated that death occurred in all phases of the cell cycle. We conclude that with increasing age of culture, an increased fraction of cycling PHA-stimulated lymphocytes fail to progress all the way to mitosis and are arrested in S or G2 phases. These observations provide evidence against the existence of a specific “restriction point” in G1 or at the G1/S interface in aging proliferating human lymphocyte cultures, but it remains to be determined whether cells arrested in S or G2 phases retain the capacity to complete the cell cycle in more favorable culture environments.  相似文献   

10.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

11.
12.
Reuber H35 rat hepatoma cells, clone KRC, were used to study the effect of cyclic AMP on radiation-induced cell death. Treatment of logarithmically growing cultures with 0.5 mM cAMP for 17 hr prior to irradiation resulted in a decreased cell survival. Similar results were obtained with cultures irradiated after treatment with Bt2cAMP. Treatment of H35 cells with cAMP or Bt2cAMP caused inhibition of their proliferation and resulted in an accumulation of cells in early S phase and a depletion of G2-phase cells. In synchronized cultures cells were relatively radioresistant during their S phase. In addition to single-dose treatment with X rays, the effect of Bt2cAMP on radiation-induced cell death was studied during fractionated irradiation with 2.5 Gy per day. This fractionated irradiation resulted in a dose-reduction factor of 1.6 at the 10% survival level and a 10-fold decrease in the surviving cell population due to the cooperative effects of Bt2cAMP on growth rate and radiation survival. The effect of cAMP on radiation-induced mitotic delay was also studied. It appeared that whereas cAMP had no effect on the progression of G2 cells into mitosis, it prevented cells from recovery from the X-ray mitotic delay in G2.  相似文献   

13.
S S Barham  B R Brinkley 《Cytobios》1976,15(58-59):85-96
Inhibitors of mitochondrial respiration, phosphorylation inhibitors, and uncoupling agents have been reported to delay or inhibit mitosis in cultured mammalian cells. Although the molecular mechanism by which mitosis is delayed in the presence of most respiratory inhibitors presumably involves lowered ATP production for mitotic requirements, one respiratory inhibitor, rotenone, was determined to arrest mitosis by an unrelated mechanism. Cell cycle kinetics studies, oxygen consumption measurements, and viscosity assays indicate that rotenone arrests cultured mammalian cells in mitosis by inhibiting spindle microtubule assembly by a mechanism analogous with colchicine, Colecemid and related antimitotic drugs. Amytal, which blocks electron transport at the same site as does rotenone, failed to arrest cell progression at mitosis. Rotenone delayed cell progression in all phases of the cell cycle, apparently as a direct result of respiration inhibition. Thus, rotenone appears to exert a dual function on events of the cell cycle.  相似文献   

14.
We have previously shown that greater than 90% of B6.1 cells, a murine cytolytic T lymphocyte (CTL) cloned line which is solely dependent on T cell growth factor (TCGF) for continuous growth in vitro, accumulates in the G1 phase of the cell cycle after transfer into culture medium containing no TCGF. Moreover, when such quiescent cells are exposed again to TCGF, greater than 85% reenter the S phase and subsequently divide in a relatively synchronous fashion. In this study, the regulation of the rate of cell cycle progression of quiescent B6.1 cells after exposure to TCGF was analyzed using two complementary DNA staining techniques, namely, the propodium iodide method (to enumerate cells entering the S phase) and the Hoechst 33342-bromodeoxyuridine substitution technique (to enumerate cells which have gone through mitosis). After TCGF addition, quiescent B6.1 cells resumed DNA synthesis and divided after a lag phase of 10 and 20 h, respectively. The duration of the lag phase was found to be dependent on the length of time during which quiescent B6.1 cells had been deprived of TCGF, but was independent of the concentration of TCGF used for restimulation. In contrast, the proportion of cells responding to TCGF as well as the rate of their first passage through mitosis was dependent on TCGF concentration. The presence of TCGF for at least 6 h was required for a maximal response. Moreover, direct evidence was obtained that TCGF by itself was able to stimulate proliferation of quiescent B6.1 cells in the absence of other growth factors and serum constituents other than bovine serum albumin, transferrin, and lipids.  相似文献   

15.
Nuclear migration is regulated by the LIS1 protein, which is the regulatory subunit of platelet activating factor (PAF) acetyl-hydrolase, an enzyme complex that inactivates the lipid mediator PAF. Among other functions, PAF modulates cell proliferation, but its effects upon mechanisms of the cell cycle are unknown. Here we show that PAF inhibited interkinetic nuclear migration (IKNM) in retinal proliferating progenitors. The lipid did not, however, affect the velocity of nuclear migration in cells that escaped IKNM blockade. The effect depended on the PAF receptor, Erk and p38 pathways and Chk1. PAF induced no cell death, nor a reduction in nucleotide incorporation, which rules out an intra-S checkpoint. Notwithstanding, the expected increase in cyclin B1 content during G2-phase was prevented in the proliferating cells. We conclude that PAF blocks interkinetic nuclear migration in retinal progenitor cells through an unusual arrest of the cell cycle at the transition from S to G2 phases. These data suggest the operation, in the developing retina, of a checkpoint that monitors the transition from S to G2 phases of the cell cycle.  相似文献   

16.
Blockade of the ERK signaling pathway by ERK kinase (MEK) inhibitors selectively enhances the induction of apoptosis by microtubule inhibitors in tumor cells in which this pathway is constitutively activated. We examined the mechanism by which such drug combinations induce enhanced cell death by applying time-lapse microscopy to track the fate of individual cells. MEK inhibitors did not affect the first mitosis after drug exposure, but most cells remained arrested in interphase without entering a second mitosis. Low concentrations of microtubule inhibitors induced prolonged mitotic arrest followed by exit of cells from mitosis without division, with most cells remaining viable. However, the combination of a MEK inhibitor and a microtubule inhibitor induced massive cell death during prolonged mitosis. Impairment of spindle assembly checkpoint function by RNAi-mediated depletion of Mad2 or BubR1 markedly suppressed such prolonged mitotic arrest and cell death. The cell death was accompanied by up-regulation of the pro-apoptotic protein Bim (to which MEK inhibitors contributed) and by down-regulation of the anti-apoptotic protein Mcl-1 (to which microtubule and MEK inhibitors contributed synergistically). Whereas RNAi-mediated knockdown of Bim suppressed cell death, stabilization of Mcl-1 by RNAi-mediated depletion of Mule slowed its onset. Depletion of Mcl-1 sensitized tumor cells to MEK inhibitor-induced cell death, an effect that was antagonized by knockdown of Bim. The combination of MEK and microtubule inhibitors thus targets Bim and Mcl-1 in a cooperative manner to induce massive cell death in tumor cells with aberrant ERK pathway activation.  相似文献   

17.
Some effects of a 2-h exposure to either aphidicolin (APC) or cytosine arabinoside (ara-C) on S-phase cells of the cell line JU56 have been measured. At a concentration of 1.5 X 10(-5) M of either drug, incorporation of tritiated thymidine into log-phase cultured was reduced by 97-99%. A 2-h exposure to either drug at the same concentration induced chromosome aberrations in cells in S when they subsequently reached mitosis. However, exposure to ara-C induced small numbers of aberrations per damaged cells, and most cells were undamaged. Exposure to APC induced gross chromosomal damage (pulverized chromosomes) in damaged cells. More cells were delayed, and for longer, after exposure to APC than after exposure to ara-C. The results of clonal assays were consistent with the assumption that chromosome aberrations are the proximal cause of reproductive cell death. In the case of ara-C, the results of this and a previous study are consistent with the assumption that cell death and chromosome aberrations are correlated with incorporation of ara-C into DNA in S-phase cells, but that these biological effects manifest themselves only with doses when inhibition of semi-conservative DNA synthesis is greater than 97%.  相似文献   

18.
The mitotic cell selection technique was used to monitor the effect of cordycepin and/or 100 rad of X-rays on the entry of asynchronous or synchronous Chinese hamster ovary cells into mitosis. Continuous exposure of asynchronous cells to 5–50 μg/ml of cordycepin caused a rapid increase in the relative numbers of cells entering mitosis. In irradiated cells, cordycepin also reduced a 120-min mitotic delay by about 80 min and shifted the X-ray transition point about 10 min farther away from mitosis. Further studies showed that synchronous cells, treated continuously with 15 μg/ml of cordycepin starting at mid-to-late S phase, proceeded into mitosis approx. 40 min ahead of controls. This acceleration was associated with a 30-min lengthening of S phase and a reduction in the length of G2 from 80 to about 10 min. Furthermore, cordycepin reduced the 70-min mitotic delay observed for cells irradiated in S phase by 20 min. In contrast to the results for treatment at mid-S phase, continuous treatment during G2 of unirradiated synchronous cells with 15 μg/ml of cordycepin had little effect on accelerating cells into mitosis, yet did reduce by about 60 min the 170-min mitotic delay observed for cells irradiated in G2. Unirradiated synchronous cells treated with cordycepin starting before mid-S did not reach mitosis. Thus, there are the following transition points or intervals for cordycepin: for treatment prior to mid-S phase, cell cycle progression through S is blocked; for treatment between mid-S and late S, progression through S continues but progression through G2 is accelerated; and for treatment during G2, the rate of progression in accelerated only if the cells have been irradiated. These results are discussed in relation to the synthesis during late S and G2 of critical protein molecules essential for mitosis.  相似文献   

19.
The cell cycle phase that mediates the induction of intestinal sucrase-isomaltase (SI) expression by glucocorticoids was investigated by measuring migration rates of 3H-DNA-labeled and of SI-containing epithelial cells by autoradiography and indirect immunofluorescent staining after simultaneous administration of [3H]thymidine and cortisone to 12-d-old rat pups. By 24 and 48 h, lead 3H-DNA-labeled cells had migrated 7.8 and 12.4 cell positions higher on the villus than lead cells expressing SI. Cell migration rates from 12 to 24 h and 24 to 48 h were 0.68 and 0.97 cell position/h. Thus, commitment to SI expression occurred in cells 11.5-12.8 h after the S phase, which is calculated to be in the G1 phase. To determine whether committed cells need to replicate to express SI, cell differentiation was examined in primary cultures of crypt cells originating from corticosterone-treated rats. About two-thirds of cultured cells were retarded in the S phase after plating, as judged by no increase of DNA labeling indices, no change in epithelial cell number, and the absence of mitosis (less than 0.01%). The proportion of cells expressing SI increased from 0 to 6-8% between 12 and 24 h, and reached 48% 48 h after plating on collagen-coated dishes. SI expression did not occur in cells plated on glass or plastic surfaces. Pulse labeling with [35S]methionine confirmed that de novo synthesis of SI occurred in cell cultures. Thus, additional cell cycling of committed cells occurring in vivo is not obligatory for the expression of SI.  相似文献   

20.
After peripheral nerve injury, Schwann cells are rapidly activated to participate in the regenerative process and modulate local immune reactions. Tumor necrosis factor-α (TNF-α), one of the major initiators of the inflammatory cascade, has been known to exert pleiotropic functions during peripheral nerve injury and regeneration. In this study, we aimed to investigate the in vitro effects of TNF-α on peripheral neural cells. First, gene-microarray analysis was applied to the RNA samples extracted from injured peripheral nerves, providing the information of gene interactions post nerve injury. Then, after primary cultured Schwann cells were treated with increasing dosages (0–40 ng/ml) of TNF-α, cell proliferation and migration were examined by EdU incorporation and a transwell-based assay, and cell apoptosis was observed and quantified by electron microscopy and Annexin V-FITC assay, respectively. The results showed that lower dosages of TNF-α increased cell proliferation and migration, whereas higher dosages of TNF-α decreased cell proliferation and migration and enhanced cell apoptosis. The tests using a chemical inhibitor of TNF-α further confirmed the above effects of TNF-α. To understand how TNF-α produced the dose-dependent dual effects on primary cultured Schwann cells, we performed co-immunoprecipitation, Western blot analysis, and immunocytochemistry to decipher the complex network of biochemical pathways involving many signaling molecules, i.e., TNF receptor-associated death domain, Fas-associated death domain, receptor interacting protein, JNK, NF-κB p65, and caspases, thus assuming the mechanisms by which TNF-α activated the death and survival pathways and achieved a balance between the two opposite actions in primary cultured Schwann cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号