首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ρ subunits that constitute the γ‐aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand‐gated chloride channels that give rise to sustained GABA‐evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA ρ1B and ρ2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site‐directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild‐type ρ1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild‐type ρ2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA ρ receptors, e.g., when the serine residue of the ρ2A receptor was changed to proline, the response of the mutant receptor to imidazole‐4‐acetic acid (I4AA) mimicked that of the ρ1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various ρ receptor subunits. It is noteworthy that the proline residue in native ρ1 subunits and the serine residue of ρ2 subunits are well conserved in all species, a good indication that the presence of multiple GABA ρ subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 67–76, 1999  相似文献   

2.
Two of the gamma-aminobutyric acid (GABA) receptors, GABAA and GABAC, are ligand-gated chloride channels expressed by neurons in the retina and throughout the central nervous system. The different subunit composition of these two classes of GABA receptor result in very different physiological and pharmacological properties. Although little is known at the molecular level as to the subunit composition of any native GABA receptor, it is thought that GABAC receptors are homomeric assemblies of rho-subunits. However, we found that the kinetic and pharmacological properties of homomeric receptors formed by each of the rho-subunits cloned from perch retina did not resemble those of the GABAC receptors on perch bipolar cells. Because both GABAA and GABAC receptors are present on retinal bipolar cells, we attempted to determine whether subunits of these two receptor classes are capable of interacting with each other. We report here that, when coexpressed in Xenopus oocytes, heteromeric (rho 1B gamma 2) receptors formed by coassembly of the rho 1B-subunit with the gamma 2-subunit of the GABAA receptor displayed response properties very similar to those obtained with current recordings from bipolar cells. In addition to being unresponsive to bicuculline and diazepam, the time-constant of deactivation, and the sensitivities to GABA, picrotoxin and zinc closely approximated the values obtained from the native GABAC receptors on bipolar cells. These results provide the first direct evidence of interaction between GABA rho and GABAA receptor subunits. It seems highly likely that coassembly of GABAA and rho-subunits contributes to the molecular organization of GABAC receptors in the retina and perhaps throughout the nervous system.  相似文献   

3.
4.
The gamma-aminobutyric acid type C (GABA(C)) receptor is a ligand-gated chloride channel with distinct physiological and pharmacological properties. Although the exact subunit composition of native GABA(C) receptors has yet to be firmly established, there is general agreement that GABA rho subunits participate in their formation. Recent studies on white perch suggest that certain GABA rho subunits can co-assemble with the GABA(A) receptor gamma2 subunit to form a heteromeric receptor with electrophysiological properties that correspond more closely to the native GABA(C) receptor on retinal neurons than any of the homomeric rho receptors. In the present study we examined the interactions among various perch GABA rho and gamma2 subunits. When co-expressed in Xenopus oocytes, the gamma2 subunit co-immunoprecipitated with Flag-tagged perch rho1A, rho1B, and rho2B subunits, but not with the Flag-tagged perch rho2A subunit. Immunocytochemical studies indicated that the membrane surface expression of the gamma2 subunit was detected only when it was co-expressed with perch rho1A, rho1B, or rho2B subunit, but not with the perch rho2A subunit or when expressed alone. In addition, co-immunoprecipitation of perch rho1B and gamma2 subunits was also detected in protein samples of the teleost retina. Taken together, these findings suggest that a heteromeric rho(gamma2) receptor could represent one form of GABA(C) receptor on retinal neurons.  相似文献   

5.
Y Chang  DS Weiss 《Biophysical journal》1999,77(5):2542-2551
A conserved leucine residue in the midpoint of the second transmembrane domain (M2) of the ligand-activated ion channel family has been proposed to play an important role in receptor activation. In this study, we assessed the importance of this leucine in the activation of rat alpha1beta2gamma2 GABA receptors expressed in Xenopus laevis oocytes by site-directed mutagenesis and two-electrode voltage clamp. The hydrophobic conserved M2 leucines in alpha1(L263), beta2(L259), and gamma2(L274) subunits were mutated to the hydrophilic amino acid residue serine and coexpressed in all possible combinations with their wild-type and/or mutant counterparts. The mutation in any one subunit decreased the EC(50) and created spontaneous openings that were blocked by picrotoxin and, surprisingly, by the competitive antagonist bicuculline. The magnitudes of the shifts in GABA EC(50) and picrotoxin IC(50) as well as the degree of spontaneous openings were all correlated with the number of subunits carrying the leucine mutation. Simultaneous mutation of the GABA binding site (beta2Y157S; increased the EC(50)) and the conserved M2 leucine (beta2L259S; decreased the EC(50)) produced receptors with the predicted intermediate agonist sensitivity, indicating the two mutations affect binding and gating independently. The results are discussed in light of a proposed allosteric activation mechanism.  相似文献   

6.
Murine gamma-aminobutyric acid (GABA) type A homomeric receptors made of beta1 subunits are profoundly different, when expressed in Xenopus oocytes, from beta3 homomeric receptors. Application of the intravenous general anesthetic pentobarbital, etomidate, or propofol to beta3 homomeric receptors allows current flow. In contrast, beta1 homomers do not respond to any of these agents. Through construction of chimeric beta1/beta3 receptors, we identified a single amino acid that determines the pharmacological difference between the two beta subunits. When the serine residue present in the wild-type nonresponsive beta1 subunit is replaced by an asparagine found in the same position in the beta3 subunit, the resulting point-mutated beta1S265N forms receptors responsive to intravenous general anesthetics, like the wild-type beta3 subunits. Conversely, after mutation of the wild-type beta3 to beta3N265S, the homomeric receptor loses its ability to respond to these same general anesthetics. Wild-type-to-mutant titration experiments showed that the nonresponsive phenotype is dominant: A single nonresponsive residue within a pentameric receptor is sufficient to render the receptor nonresponsive. In alpha1betax or alpha1betaxgamma2 heteromeric receptors, the same residue manifests as a partial determinant of the degree of potentiation of the GABA-induced current by some general anesthetics. The location of this amino acid at the extracellular end of the second transmembrane segment, its influence in both homomeric and heteromeric receptor function, and its dominant behavior suggest that this residue of the beta subunit is involved in an allosteric modulation of the receptor.  相似文献   

7.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The present work was undertaken to characterize kinetics, including activation, desensitization and deactivation, of responses mediated by GABAA and GABAC receptors on carp retinal bipolar cells, using the whole-cell patch-clamp technique. It was revealed that the GABAC response was generally slower in kinetics than the GABAA response. Activation kinetics of both the receptors could be well fit by monoexponential functions with time constants τ, being 44.57 ms (GABAC) and 10.86 ms (GABAA) respectively. Desensitization of the GABAA response was characterized by a fast and a slow exponential component with time constants of τfast = 2.16 s and τslow = 19.78 s respectively, whereas desensitization of the GABAC response was fit by a monoexponential function of the time constant τ = 6.98 s. Deactivation at both the receptors was adequately described by biexponential functions with time constants being much higher for the GABAC response (τfast = 674.8 ms; τslow = 2 090 ms) than those for the GABAA response (τfast = 42.07 ms; τslow = 275.1 ms). These differences in kinetics suggest that GABAC and GABAA receptors may be involved in processing signals in different frequency domains.  相似文献   

9.
Mutagenesis of recombinant rho1 gamma-aminobutyric acid (GABA) receptors has previously identified five residues in the amino terminal extracellular domain that play an important role in GABA binding. Here, we present evidence that the tyrosine at position 102 of the rho1 receptor is also associated with the agonist binding site. Wild-type and mutant rho1 receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. When Tyr-102 was mutated to cysteine, serine, tryptophan, or glycine the EC(50) increased 31-, 214-, 664-, and 8752-fold, respectively. An increase in the IC(50) was also observed for the competitive antagonist 3-APMPA, but not for the non-competitive antagonist picrotoxin. Y102C was accessible to modification by methanethiosulfonate, and this modification was prevented by both GABA and 3-APMPA. An interesting characteristic of the Y102S mutant receptor was that, in the absence of GABA, there was an unusually high oocyte resting conductance that was blocked by both 3-APMPA and picrotoxin, indicating spontaneously opening GABA receptors. It appears that mutation of Tyr-102 perturbs the binding site and gates the pore. We conclude that Tyr-102 is a component of the GABA binding domain and speculate that Tyr-102 might be important for coupling agonist binding to channel opening.  相似文献   

10.
The gamma-amino-n-butyric acid type B (GABA(B)) receptor is composed of two subunits, GABA(B)1 and GABA(B)2, belonging to the family 3 heptahelix receptors. These proteins possess two domains, a seven transmembrane core and an extracellular domain containing the agonist binding site. This binding domain is likely to fold like bacterial periplasmic binding proteins that are constituted of two lobes that close upon ligand binding. Here, using molecular modeling and site-directed mutagenesis, we have identified residues in the GABA(B)1 subunit that are critical for agonist binding and activation of the heteromeric receptor. Our data suggest that two residues (Ser(246) and Asp(471)) located within lobe I form H bonds and a salt bridge with carboxylic and amino groups of GABA, respectively, demonstrating the pivotal role of lobe I in agonist binding. Interestingly, our data also suggest that a residue within lobe II (Tyr(366)) interacts with the agonists in a closed form model of the binding domain, and its mutation into Ala converts the agonist baclofen into an antagonist. These data demonstrate the pivotal role played by the GABA(B)1 subunit in the activation of the heteromeric GABA(B) receptor and are consistent with the idea that a closed state of the binding domain of family 3 receptors is required for their activation.  相似文献   

11.
Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-aminobutyric acid) receptors in the retina, we used antibodies specific for GABA(C) receptor rho1-3 subunits. Analysis of immunoprecipitated proteins by MALDI-TOF MS (matrix-assisted laser-desorption ionization-time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253-813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the rho1 subunit, but not to other subunits of GABA(C), GABA(A) or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and rho1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABA(C) receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABA(C) receptor-containing signal complexes.  相似文献   

12.
The ability of members of the nicotinicoid superfamily of ligand-gated ion channels to selectively conduct anions or cations is critical to their function within the central nervous system. Recent work has demonstrated that residues at the intracellular end of the second transmembrane domain, between the -3' and 2' positions, form the ion selectivity filter of these receptors. In this study, the proline residue at the 2' position (Pro-2') at the intracellular end of the second transmembrane domain of the gamma-aminobutyric acid type C rho 1 subunit was mutated to glutamate (rho 1P2'E) and arginine (rho 1P2'R). Dilution potential experiments indicated that the charge selectivity of the rho 1P2'E receptor channels had been inverted, with the channels now becoming predominantly cation selective, indicating the ability of negatively charged residues at this 2' position to control charge selectivity. The mutation was also seen to have significantly decreased agonist potency and intrinsic efficacy. In contrast, the rho 1P2'R receptor channels were anion-selective but were now found to be constitutively open with high holding currents (inhibited by low gamma-aminobutyric acid doses and the competitive antagonist, 1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid alone) and increased agonist activity. Hill coefficients of both mutants were decreased, but competitive antagonist studies indicated that their binding sites were not significantly affected.  相似文献   

13.
5-hydroxytryptamine (5-HT)3 and gamma-aminobutyric acid, type C (GABAC) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which also includes nicotinic acetylcholine, GABAA, and glycine receptors. The details of how agonist binding to these receptors results in channel opening is not fully understood but is known to involve charged residues at the extracellular/transmembrane interface. Here we have examined the roles of such residues in 5-HT3 and GABAC receptors. Charge reversal experiments combined with data from activation by the partial agonist beta-alanine show that in GABAC receptors there is a salt bridge between Glu-92 (in loop 2) and Arg-258 (in the pre-M1 region), which is involved in receptor gating. The equivalent residues in the 5-HT3 receptor are important for receptor expression, but charge reversal experiments do not restore function, indicating that there is not a salt bridge here. There is, however, an interaction between Glu-215 (loop 9) and Arg-246 (pre-M1) in the 5-HT3 receptor, although the coupling energy determined from mutant cycle analysis is lower than might be expected for a salt bridge. Overall the data show that charged residues at the extracellular/transmembrane domain interfaces in 5-HT3 and GABAC receptors are important and that specific, but not equivalent, molecular interactions between them are involved in the gating process. Thus, we propose that the molecular details of interactions in the transduction pathway between the binding site and the pore can differ between different Cys-loop receptors.  相似文献   

14.
Picrotoxin (PTX) is a noncompetitive antagonist of many ligand-gated ion channels, with a site of action believed to be within the ion-conducting pore. In the A-type gamma-aminobutyric acid receptor, a threonine residue in the second transmembrane domain is of particular importance for the binding of, and ultimate inhibition by, PTX. To better understand the relationship between this residue and the PTX molecule, we mutated this threonine residue to serine, valine, and tyrosine to change the structural and biochemical characteristics at this location. The known subunit stoichiometry of the A-type gamma-aminobutyric acid receptor allowed us to create receptors with anywhere from zero to five mutations. With an increasing number of mutated subunits, each amino acid substitution revealed a unique pattern of changes in PTX sensitivity, ultimately encompassing sensitivity shifts over several orders of magnitude. The electrophysiological data on PTX-mediated block, and supporting modeling and docking studies, provide evidence that an interaction between the PTX molecule and three adjacent uncharged polar amino acids at this position of the pore are crucial for PTX-mediated inhibition.  相似文献   

15.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   

16.
17.
L-655,708 is a ligand for the benzodiazepine site of the gamma-aminobutyric acid type A (GABA(A)) receptor that exhibits a 100-fold higher affinity for alpha5-containing receptors compared with alpha1-containing receptors. Molecular biology approaches have been used to determine which residues in the alpha5 subunit are responsible for this selectivity. Two amino acids have been identified, alpha5Thr208 and alpha5Ile215, each of which individually confer approximately 10-fold binding selectivity for the ligand and which together account for the 100-fold higher affinity of this ligand at alpha5-containing receptors. L-655,708 is a partial inverse agonist at the GABA(A) receptor which exhibited no functional selectivity between alpha1- and alpha5-containing receptors and showed no change in efficacy at receptors containing alpha1 subunits where amino acids at both of the sites had been altered to their alpha5 counterparts (alpha1Ser205-Thr,Val212-Ile). In addition to determining the binding selectivity of L-655,708, these amino acid residues also influence the binding affinities of a number of other benzodiazepine (BZ) site ligands. They are thus important elements of the BZ site of the GABA(A) receptor, and further delineate a region just N-terminal to the first transmembrane domain of the receptor alpha subunit that contributes to this binding site.  相似文献   

18.
Neurosteroids are known as allosteric modulators of ionotropic gamma-aminobutyric acid (GABA) receptors. Here, we investigated sites of positive allosteric modulation by allotetrahydrodeoxycorticosterone (5alpha-THDOC) at GABA receptors using the technique of chimeragenesis and the Xenopus oocyte expression system. Our findings have demonstrated that the region from transmembrane segment (TM) 4 to the C-terminus of the GABA(A) receptor alpha1 subunit is crucial for the action of 5alpha-THDOC, but insufficient for the action of another neurosteroid allopregnanolone, suggesting that a specific region critical for neurosteroid action at GABA receptors exists in the domain between TM4 and the C-terminus of GABA receptor subunits.  相似文献   

19.
Alanine-scanning mutagenesis and the whole cell voltage clamp technique were used to investigate the function of the extracellular loop between the second and third transmembrane domains (TM2-TM3) of the gamma-aminobutyric acid type A receptor (GABA(A)-R). A conserved arginine residue in the TM2-TM3 loop of the GABA(A)-R alpha(2) subunit was mutated to alanine, and the mutant alpha(2)(R274A) was co-expressed with wild-type beta(1) and gamma(2S) subunits in human embryonic kidney (HEK) 293 cells. The GABA EC(50) was increased by about 27-fold in the mutant receptor relative to receptors containing a wild-type alpha(2) subunit. Similarly, the GABA EC(50) at alpha(2)(L277A)beta(1)gamma(2S) and alpha(2)(K279A)beta(1)gamma(2S) GABA(A)-R combinations was increased by 51- and 4-fold, respectively. The alpha(2)(R274A) or alpha(2)(L277A) mutations also reduced the maximal response of piperidine-4-sulfonic acid relative to GABA by converting piperidine-4-sulfonic acid into a weak partial agonist at the GABA(A)-R. Based on these results, we propose that alpha(2)(Arg-274) and alpha(2)(Leu-277) are crucial to the efficient transduction of agonist binding into channel gating at the GABA(A)-R.  相似文献   

20.
gamma-Aminobutyric acid (GABA) receptor/channel rho 1 subunits are important components in inhibitory pathways in the central nervous system. However, the precise locations and roles of these receptors in the central nervous system are unknown. We studied the expression localization of GABA receptor/channel rho 1 subunit in mouse spinal cord and dorsal root ganglia (DRG). The immunohistochemistry results indicated that GABA receptor/channel rho 1 subunits were expressed in mouse spinal cord superficial dorsal horn (lamina I and lamina II) and in DRG. To understand the functions of the GABA receptor/channel rho 1 subunit in these crucial sites of sensory transmission in vivo, we generated GABA receptor/channel rho 1 subunit mutant mice (rho 1-/-). GABA receptor/channel rho 1 subunit expression in the rho 1-/- mice was eliminated completely, whereas the gross neuroanatomical structures of the rho 1-/- mice spinal cord and DRG were unchanged. Electrophysiological recording showed that GABA-mediated spinal cord response was altered in the rho 1-/- mice. A decreased threshold for mechanical pain in the rho 1-/- mice compared with control mice was observed with the von Frey filament test. These findings indicate that the GABA receptor/channel rho 1 subunit plays an important role in modulating spinal cord pain transmission functions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号