首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
λ-Glutamylcysteine synthetase activity (EC 6.3.2.2) was analysed in Sephacryl S-200 eluents of extracts from cell suspension cultures ofNicotiana tabacum L. cv. Samsun by determination of λ-glutamylcysteine as its monobromobimane derivative. The enzyme has a relative molecular mass (Mr) of 60000 and exhibits maximal activity at pH 8 (50% at pH 7.0 and pH9.0) and an absolute requirement for Mg2+. With 0.2mM Cd2+ or Zn2+, enzyme activity was reduced by 35% and 19%, respectively. Treatment with 5 mM dithioerythritol led to a heavy loss of activity and to dissociation into subunits (Mr 34000). Buthionine sulfoximine andl-methionine-sulfoximine, known as potent inhibitors of λ-glutamylcysteine synthetase from mammalian cells, were found to be effective inhibitors of the plant enzyme too. The apparent Km values forl-glutamate,l-cysteine, and α-aminobutyrate were, respectively, 10.4mM, 0.19 mM, and 6.36 mM. The enzyme was completely inhibited by glutathione (Ki=0.42 mM). The data indicate that the rate of glutathione synthesis in vivo may be influenced substantially by the concentration of cysteine and glutamate and may be further regulated by feedback inhibition of λ-glutamylcysteine synthetase by glutathione itself. λ-Glutamylcysteine synthetase is, like glutathione synthetase, localized in chloroplasts as well as in the cytoplasm. Chloroplasts fromPisum sativum L. isolated on a Percoll gradient contained about 72% of the λ-glutamylcysteine synthetase activity in leaf cells and 48% of the total glutathione synthetase activity. In chloroplasts ofSpinacia oleracea L. about 61% of the total λ-glutamylcysteine synthetase activity of the cells were found and 58% of the total glutathione synthetase activity. These results indicate that glutathione synthesis can take place in at least two compartments of the plant cell. Dedicated to Professor A. Prison on the occasion of his 80th birthday  相似文献   

2.
A viridicatin derivative having anti-auxin action, i.e. 3-(4-phenylcarbostyriloxy)acetic acid (V-OCH2COOH) was found to increase the formation of both IAA (indole-3-acetic acid)-oxidase and -synthetase in rice and pea seedlings. With the IAA synthetase, the activity on indolepyruvic acid was markedly increased. V-OCH2COOH stimulated the induction ofIAA oxidase in the excised segments from pea epicotyl, but did not IAA synthetase. The effect of V-OCH2COOH on the former was inhibited by cycloheximide. Activity of the IAA oxidase extracted from pea epicotyl and dialyzed was also stimulated by V-OCH2COOH in the presence of a cofactor such as 2,4-dichlorophenol. Effect of IAA per se on enzyme regulation was tested in parallel and discussed.  相似文献   

3.
The auxins 4-chloroindole-3-acetic acid (4-Cl-IAA) and indole-3-acetic acid (IAA) occur naturally in pea vegetative and fruit tissues (Pisum sativum L.). Previous work has shown that 4-Cl-IAA can substitute for the seeds in the stimulation of pea pericarp growth, whereas IAA is ineffective. Both auxins are found as free acids and as low-molecular-weight conjugates from organic solvent-soluble extracts from pea fruit. Here we present evidence for an additional conjugated auxin species that was not soluble in organic solvent and yielded 4-Cl-IAA and IAA after strong alkaline hydrolysis, suggestive of auxin attachment to pea seed and pericarp proteins. The solvent-insoluble conjugated 4-Cl-IAA in young pericarp was on average 15-fold greater than solvent-soluble 4-Cl-IAA. The solvent-insoluble conjugated IAA was approximately half the levels reported for the solvent-soluble IAA fraction. To identify putative 4-Cl-IAA-bound proteins, polyclonal antibodies were raised to 4-Cl-IAA linked to bovine serum albumin protein (BSA). Immunoblots probed with anti-4-Cl-IAA-BSA antiserum detected three to four unique bands (32–40 kDa) in primarily maternal tissues, and a different set of protein bands were detected in mainly embryonic tissues (ca. 65–74 kDa in mature seed). 4-Cl-IAA and IAA were also identified from protein fractions separated by polyacrylamide gel electrophoresis using GC-MS. These data show that the majority of 4-Cl-IAA, the growth-active auxin in young pea pericarp, and significant levels of IAA are linked to protein fractions. Auxin-proteins may function in regulation of free bioactive 4-Cl-IAA and IAA levels, and/or 4-Cl-IAA or IAA may be targeted to specific proteins post-translationally to modify protein function or stability.  相似文献   

4.
The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species.  相似文献   

5.
The metabolism of exogenously supplied abscisic acid (ABA) during translocation attracted under the influence of indolyl-3-acetic acid (IAA) was studied in etiolated segments of pea (Pisum sativum L.). After 8 and 24 h 90% and 60% of the ABA, respectively, were found in the segments in unchanged form. Phaseic acid, dihydrophaseic acid and the glucose ester of ABA were found as ABA metabolites. Results indicated that the growth processes initiated by the application of IAA were associated neither with an increased immobilization nor increased metabolization of this growth regulator. † Part II. Influence of Auxin-like Substances upon the Transport of14C-ABA in Long Pea Epicotyl Segments.  相似文献   

6.
Environmental contaminants like polycyclic aromatic hydrocarbons can influence many biochemical and physiological processes in plants. The effect of 0.1, 1 and 5 mg l−1 of fluoranthene (FLT) in combination with indole-3-acetic acid (IAA, 0.1 mg l−1) or a combination of IAA and N6-benzyladenine (BA, both 0.1 mg l−1) on the growth and production of ethylene, ethane and CO2 in Pisum sativum L. cultivated for 21 days in vitro was investigated. In 21 days old plants also net photosynthesis rate, content of FLT and cytokinins were evaluated. FLT 5 mg l−1 significantly inhibited the growth of pea after 21 days in both IAA and IAA + BA treatments, increased production of ethylene (by 11% in IAA and 14% in IAA + BA treatments, respectively) and ethane (by 28 and 18%) and decreased production of CO2 (by 23 and 29%). The net photosynthesis rate decreased in response to FLT concentration by up to 51% under saturating irradiation (600–1,200 μmol m−2 s−1), as found in IAA + BA + FLT 5 mg l−1 treatment. The content of FLT in pea plant shoots well correlated with increasing FLT treatment in both IAA and IAA + BA medium. The content of cytokinins in pea shoots changed in response to FLT treatment. FLT 5 mg l−1 caused a rise in level of trans-zeatin (by 16% in IAA and 9% in IAA + BA treatments, respectively), dihydrozeatin riboside (by 27 and 50%), benzyladenine (by 3 and 80%), benzyladenine riboside (by 44 and 17%) and meta-topolin riboside (by 139 and 214%), no change in isopentenyladenine level and a decrease in meta-topolin level (by 33% in IAA and 36% in IAA + BA treatments, respectively). Cultivation of plants in vitro allowed not only to assess their growth, photosynthetic activity and the level of cytokinins, but also to extend the knowledge about the effect of PAHs on production of gaseous stress indicators like ethylene, ethane and CO2. Recorded changes in all studied parameters show, that persistent organic pollutants like PAHs can negatively influence plant growth and development.  相似文献   

7.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

8.
Brabetz W  Wolter FP  Brade H 《Planta》2000,212(1):136-143
Recombinant plasmids encoding 3-deoxy-d-manno-oct-2-ulosonate-8-phosphate (Kdo-8-P) synthase (KdsA; EC 4.1.2.16) were identified from a cDNA library of Pisum sativum L. (pea) by complementing a temperature-sensitive kdsA ts mutant of the Gram-negative bacterium Salmonella enterica. Sequence analysis of several inserts revealed a central open reading frame encoding a protein of 290 amino acids with a high degree of amino acid sequence similarity to bacterial KdsA. The cDNA was confirmed by amplifying a 1,812-bp DNA fragment from the chromosome of pea that encoded four exons around the 5′-end of kdsA. The recombinant enzyme was subcloned, overexpressed and characterized to synthesize Kdo-8-P from d-arabinose-5-phosphate and phosphoenolpyruvate. The pH optimum was 6.1 and the activity of the enzyme was neither stimulated by the addition of divalent cations nor inhibited by EDTA. The cDNA of kdsA could not complement Escherichia coli K-12 strain AB3257, which is defective in all three isoenzymes (AroFGH) of 3-deoxy-d-arabino-hept-2-ulosonate-7-phosphate (Dha-7-P) synthase (EC 4.1.2.15), and neither d-erythrose-4-phosphate nor d-ribose-5-phosphate could substitute for d-arabinose-5-phosphate in vitro. Thus, plant cells possess a specific enzyme for the biosynthesis of Kdo-8-P with remarkable structural and functional similarities to bacterial KdsA proteins. Received: 14 July 2000 / Accepted: 30 August 2000  相似文献   

9.
This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C.  相似文献   

10.
P. Aducci  A. Ballio  M. Marra 《Planta》1986,167(1):129-132
Binding of fusicoccin (FC) to microsomal preparations of corn (Zea mays L.) coleoptiles is enhanced after incubation of the tissue with indole-3-acetic acid (IAA). Treatment of the kinetic data according to Scatchard shows that the enhancement is a consequence of an increase in the number of high-affinity FC-binding sites without changes of their KD. The minimal effective concentration of IAA is 10-7 M; above 10-5 M the effect declines. The stimulation is insensitive to protein-synthesis inhibitors (cycloheximide and puromycin). The same effect is observed with the synthetic auxins 2,4-dichlorophenoxyacetic acid and naphtalene-1-acetic acid while it is abolished by the auxin antagonists naphtalene-2-acetic acid and p-chlorophenoxyisobutyric acid. Since the above effect is only observed with intact tissue and not after incubation of IAA with microsomal preparations, a direct interaction of IAA with the FC-binding sites is ruled out and an alternative mechanism must be sought.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FC fusicoccin - [3H]FC 3H-labeled dihydrofusicoccin - IAA indole-3-acetic acid - 1-NAA naphtalene-1-acetic acid - 2-NAA naphtalene-2-acetic acid - PCIB p-chlorophenoxyisobutyric acid  相似文献   

11.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

12.
Indole-3-acetic acid (IAA) amide conjugates play an important role in balancing levels of free IAA in plant cells. The GH3 family of proteins conjugates free IAA with various amino acids. For example, auxin levels modulate expression of the Oryza sativa (rice) GH3-8 protein, which acts to prevent IAA accumulation by coupling the hormone to aspartate. To examine the kinetic properties of the enzyme, we developed a liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay system. Bacterially expressed OsGH3-8 was purified to homogeneity and used to establish the assay system. Monitoring of the reaction confirms the reaction product as IAA–Asp and demonstrates that production of the conjugate increases proportionally with both time and enzyme amount. Steady-state kinetic analysis using the LC–MS/MS-based assay yields the following parameters: V/EtIAA = 20.3 min−1, KmIAA = 123 μM, V/EtATP = 14.1 min−1, KmATP = 50 μM, V/EtAsp = 28.8 min−1, KmAsp = 1580 μM. This is the first assignment of kinetic values for any IAA–amido synthetase from plants. Compared with previously described LC- and thin-layer chromatography (TLC)-based assays, this LC–MS/MS method provides a robust and sensitive means for performing direct kinetic studies on a range of IAA-conjugating enzymes.  相似文献   

13.
Indole-3-acetic acid (IAA)-amino acid amide conjugates have been found to be present in many plants, and they are proposed to function in the regulation of plant IAA metabolism in a variety of ways. IAA-amino acid conjugate hydrolase activities, and the genes that encode them, are therefore potentially important tools for modification of IAA metabolism, both for agronomic reasons as well as for determination of the mechanisms of IAA regulation. We have developed a simple and economical method to induce IAA-amino acid conjugate hydrolases in bacteria with N-acetyl-L-amino acids. Using this method, we identified four bacterial strains that can be induced to produce IAA-Ala hydrolases: Arthrobacter ureafaciens C-10, Arthrobacter ureafaciens C-50, Arthrobacter ilicis D-50, and Cellulomonas fimi D-100. The enzyme kinetics and the biochemical characteristics of IAA-Ala hydrolase from one specific bacterium, Arthrobacter ilicis D-50, have been determined. The enzyme has a unique substrate specificity for IAA-amino acid conjugates compared to a bacterial IAA-Asp hydrolase previously characterized.  相似文献   

14.
15.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

16.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

17.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

18.
The biological activity of cell wall-derived galactoglucomannan oligosaccharides (GGMOs) was dependent on their chemical structure. Galactosyl side chains linked to the glucomanno-core influenced their inhibition of elongation growth of pea (Pisum sativum L. cv. Tyrkys) stem segments induced by 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of the number of galactosyl side chains in GGMOs caused stimulation of the endogenous growth. Modification on the glucomanno-reducing end did not affect significantly the activity of these oligosaccharides. GGMOs inhibited also the elongation induced by indole-3-acetic acid (IAA) and gibberellic acid (GA3). In the presence of IAA the elongation growth was inhibited to 20 – 35 % after 24 h of incubation depending on GGMOs concentrations (1 μM, 10 nM, 0.1 nM), similarly as in the presence of 2,4-D, which confirms the hypothesis of GGMOs antiauxin properties. The elongation induced by GA3 was inhibited to 25 – 60 %, however, the time course of inhibition was different compared with IAA and 2,4-D. The highest inhibition was determined already after 6 h of incubation with a significant decrease after this time. The results indicated a competition between GGMOs and growth regulators.  相似文献   

19.
The relationship between ATPase activity, medium acidificationand auxin-stimulated growth in segments of pea stem (Pisum sativumL., cv. Alaska) and cucumber hypocotyl (Cucumis sativus L.,cv. Long Green Ridge) was investigated using sodium orthovanadate,widely used as a selective inhibitor of plasma membrane-associatedATPase activity. ATPase activity of cucumber microsomal preparationswas about seven times lower than similar preparations from pea(on a mg microsomal protein basis) and was much more effectivelyinhibited by vanadate. Similarly, acidification of the mediumby abraded cucumber segments occurred to a lesser extent thanwith pea and showed a greater inhibition by vanadate. Both growthin controls and auxin-stimulated growth of cucumber segmentswere strongly inhibited by vanadate, whereas in pea auxin-stimulatedgrowth was reduced by only half and controls showed little inhibition.Acidification of the medium by segments of both species wasfound to occur readily even in controls and showed little promotionin the presence of IAA, although growth in both species wasrapidly and significantly promoted by IAA. These results indicatethat acidification is brought about by a plasma membrane-associatedATPase, and suggest that while acidification is an essentialfactor for auxin-stimulated growth it may not be the mechanismby which the growth rate is controlled. ATPase, Cucumis sativus, indole-3-acetic acid, Pisum sativum, vanadate  相似文献   

20.
The rate of indole-3-butyric acid (IBA) synthesis in maize seedlingsis dependent on the culture conditions of the plants. When theseedlings were grown on filter paper soaked with different amountsof water, the activity of IBA synthetase differed strongly.High amounts of water (150 and 200 ml per bowl) inhibited IBAsynthesis completely in vitro, whereas 30 and 50 ml water perbowl increased the activity dramatically. Under conditions whereIBA synthetase was inhibited (150 ml H2O), an increase of enzymeactivity was observed when abscisic acid (ABA) was exogenouslyadded in concentrations between 510–4 to 510–7M. Under ‘drought’ conditions (50 ml H2O per bowl)the same ABA concentrations were inhibitory. Jasmonic acid andsalicylic acid also enhanced IBA synthetase activity to someextent, whereas indole-3-acetic acid (IAA) and kinetin had noeffect. Activity could also be enhanced by osmotic stress (NaCIand sorbitol), but not under temperature stress. In accompanyinginvestigations the endogenous contents of IAA, IBA, and ABAunder the different culture conditions have been determinedas well as the energy charge of the seedlings. Similar observationshave been made with Amaranthus, wheat and pea seedlings Key words: Abscisic acid, Amaranthus paniculatus, drought stress, inole-3-butyric acid biosynthesis, Pisum sativum, Triticum aestivum, Zea mays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号