首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conditioned media of isolated Kupffer and endothelial liver cells were added to incubations of parenchymal liver cells, in order to test whether secretory products of Kupffer and endothelial liver cells could influence parenchymal liver cell metabolism. With Kupffer cell medium an average stimulation of glucose production by parenchymal liver cells of 140% was obtained, while endothelial liver cell medium stimulated with an average of 127%. The separation of the secretory products of Kupffer and endothelial liver cells in a low and a high molecular weight fraction indicated that the active factor(s) had a low molecular weight. Media, obtained from aspirin-pretreated Kupffer and endothelial liver cells, had no effect on the glucose production by parenchymal liver cells. Because aspirin blocks prostaglandin synthesis, it was tested if prostaglandins could be responsible for the effect of media on parenchymal liver cells. It was found that prostaglandin (PG) E1, E2, and D2 all stimulated the glucose production by parenchymal liver cells, PGD2 being the most potent. Kupffer and endothelial liver cell media as well as prostaglandins E1, E2, and D2 stimulated the activity of phosphorylase, the regulatory enzyme in glycogenolysis. The data indicate that prostaglandins, present in media from Kupffer and endothelial liver cells, may stimulate glycogenolysis in parenchymal liver cells. This implies that products of Kupffer and endothelial liver cells may play a role in the regulation of glucose homeostasis by the liver.  相似文献   

2.
Cadmium metabolism by rat liver endothelial and Kupffer cells.   总被引:1,自引:0,他引:1  
The metabolism of cadmium was investigated in Wistar-rat liver non-parenchymal cells. Kupffer and endothelial cells, the major cell populations lining the sinusoidal tracts, were isolated by collagenase dispersion and purified by centrifugal elutriation. At 20 h after subcutaneous injection of the metal salt (1.5 mg of Cd/kg body weight), endothelial cells accumulated 2-fold higher concentrations of Cd than did Kupffer or parenchymal cells. Most of the Cd in non-parenchymal cells was associated with cytosolic metallothionein (MT), the low-Mr heavy-metal-binding protein(s). When MT was quantified in cytosols from cells isolated from control rats by a 203Hg competitive-binding assay, low levels were found to be present in Kupffer, endothelial and parenchymal cells. Cd injection significantly increased MT levels in all three cell types. The induction of MT synthesis was investigated in vitro by using primary monolayer cultures. The incorporation of [35S]cysteine into MT increased 47% over constitutive levels in endothelial-cell cultures after the addition of 0.8 microM-Cd2+ to the medium for 10 h. MT synthesis in Kupffer cells was not observed. The lack of MT synthesis by monolayer cultures of Kupffer cells in vitro was associated with a decreased capacity of these cells to accumulate heavy metals from the extracellular medium. This apparent decreased ability to transport metals did not reflect a general defect in either cellular function or metabolic activity, since isolated Kupffer cells incorporated [3H]leucine into protein at rates comparable with those shown by liver parenchymal cells and readily phagocytosed particles.  相似文献   

3.
Prostaglandin (PG) E2, known as a bone-resorption factor, was released as a predominant arachidonate metabolite in the culture medium of an osteoblastic cell line cloned from mouse calvaria (MC3T3-E1). Epidermal growth factor (EGF) (10 ng/ml) prominently enhanced endogenous PGE2 synthesis, requiring the simultaneous presence of unidentified factor(s) contained in bovine serum. PGE2 synthesis increased after a lag phase for 1-2 h and reached a maximum level at about 3 h after EGF addition. EGF-stimulated PGE2 synthesis was almost completely blocked by 10 microM cycloheximide or 1 microM actinomycin D. Furthermore, when the cells were pretreated with EGF, the microsomes exhibited an increased activity of fatty acid cyclooxygenase (arachidonic acid----PGH2), whereas the activity of PGE synthase (PGH2----PGE2) remained unchanged. These results suggested an EGF-mediated induction of cyclooxygenase. Following increased PGE2 synthesis, DNA synthesis increased and alkaline phosphatase activity decreased in a slower response to EGF. PGE2 (above 0.1 microM) added to the cells could replace EGF. However, such effects of EGF on the osteoblasts could not be attributed totally to an autocrine function of PGE2 produced by stimulation with EGF because these effects of EGF were not abolished by indomethacin, which blocked the PGE2 synthesis.  相似文献   

4.
The possible role of Kupffer and endothelial liver cells in the regulation of parenchymal-liver-cell function was assessed by studying the influence of conditioned media of isolated Kupffer and endothelial cells on protein phosphorylation in isolated parenchymal cells. The phosphorylation state of three proteins was selectively influenced by the conditioned media. The phosphorylation state of an Mr-63,000 protein was decreased and the phosphorylation state of an Mr-47,000 and an Mr-97,000 protein was enhanced by these media. These effects could be mimicked by adding either prostaglandin E1, E2 or D2. Both conditioned media and prostaglandins stimulated the phosphorylase activity in parenchymal liver cells, suggesting that the Mr-97,000 phosphoprotein might be phosphorylase. Parenchymal liver cells secrete a phosphoprotein of Mr-63,000 and pI 5.0-5.5. The phosphorylation of this protein is inhibited by Kupffer- and endothelial-liver-cell media, and prostaglandins E1, E2 and D2 had a similar effect. The data indicate that Kupffer and endothelial liver cells secrete factors which influence the protein phosphorylation in parenchymal liver cells. This forms further evidence that products from non-parenchymal liver cells, in particular prostaglandin D2, might regulate glucose homoeostasis and/or other specific metabolic processes inside parenchymal cells. This stresses the concept of cellular communication inside the liver as a way by which the liver can rapidly respond to extrahepatic signals.  相似文献   

5.
Phorbol ester tumor promoters and growth factors rapidly stimulate ornithine decarboxylase activity in the transformed hamster fibroblast line HE68BP. We report here a close correspondence between the time courses and magnitudes of induction of ornithine decarboxylase activity and immunoreactive ornithine decarboxylase protein following treatment of HE68BP cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) and/or refeeding with fresh medium. Cycloheximide addition to induced cells caused a rapid fall in the levels of both ornithine decarboxylase activity and ornithine decarboxylase protein. Northern blot analysis of RNA isolated from HE68BP cells indicated that treatment with TPA and fresh medium increased the amount of two species of mRNA of lengths 2.4 and 2.1 kilobase. This increased accumulation of ornithine decarboxylase mRNA corresponded temporally to that observed at the protein level, with a 15-fold maximal induction 7 h after treatment followed by a rapid decline in hybridizable RNA. These data indicate that stimulation of ornithine decarboxylase activity by TPA or refeeding involves changes in levels of ornithine decarboxylase mRNA as well as changes in the rate of synthesis of ornithine decarboxylase protein.  相似文献   

6.
Induction of glycogenolysis in the perfused liver by platelet activating factor (PAF) was blocked by the cyclooxygenase inhibitor indomethacin. 3H-labeled PAF was shown to interact in the perfused liver primarily with Kupffer cells. The addition of PAF to Kupffer cells resulted in a dose-dependent stimulation of prostaglandin D2 (PGD2) production, which was identified as the main eicosanoid formed after PAF stimulation of the Kupffer cells. PGD2 was able to induce a dose-dependent stimulation of glycogenolysis both in the perfused liver and in isolated parenchymal cells. The time-dependency of the PGD2 production and the glucose output by the perfused liver is consistent with a primary interaction of PAF with the Kupffer cells, followed by PGD2 formation, which subsequently stimulates glucose production in parenchymal cells.  相似文献   

7.
The rate of carbohydrate flux through phosphofructokinase (measured as the rate of [3-3H]glucose detritiation) was increased fourfold in rat liver parenchymal cells incubated with conditioned medium from lipopolysaccharide-stimulated adherent liver non-parenchymal cells. The rate was not affected in parenchymal cells incubated either with lipopolysaccharide directly or with conditioned medium from non-stimulated non-parenchymal cells. The stimulation of carbohydrate flux through phosphofructokinase by conditioned medium was not duplicated by peptide cytokines known to be released by lipopolysaccharide-activated liver non-parenchymal cells (interleukin-1, interleukin-6, tumor necrosis factor-alpha, and transforming growth factor-beta) or platelet activating factor. Furthermore, formation of the active conditioned medium was not prevented by inclusion of cycloheximide or dexamethasone to inhibit cytokine synthesis, or indomethacin or BW755c to inhibit arachidonic acid metabolism, during lipopolysaccharide-stimulation of the non-parenchymal cells. The results indicate that intercellular communication between lipopolysaccharide-stimulated liver non-parenchymal cells and parenchymal cells by soluble mediators is responsible for the stimulation of liver phosphofructokinase activity during endotoxin-induced shock. Studies to isolate and identify the factor(s) in the conditioned medium are currently in progress.  相似文献   

8.
9.
A number of structurally unrelated hypolipidaemic agents and certain phthalate-ester plasticizers induce hepatomegaly and proliferation of peroxisomes in rodent liver, but there is relatively limited data regarding the specific effects of these drugs on liver non-parenchymal cells. In the present study, liver parenchymal, Kupffer and endothelial cells from untreated and fenofibrate-fed rats were isolated and the activities of two enzymes associated with peroxisomes (catalase and the peroxisomal fatty acid beta-oxidation system) as well as cytosolic and microsomal epoxide hydrolase were measured. Microsomal epoxide hydrolase, cytosolic epoxide hydrolase and catalase activities were 7-12-fold higher in parenchymal cells than in Kupffer or endothelial cells from untreated rats; the peroxisomal fatty acid beta-oxidation activity was only detected in parenchymal cells. Fenofibrate increased catalase, cytosolic epoxide hydrolase and peroxisomal fatty acid beta-oxidation activities in parenchymal cells by about 1.5-, 3.5- and 20-fold, respectively. The induction of catalase (2-3-fold) and cytosolic epoxide hydrolase (3-5-fold) was also observed in Kupffer and endothelial cells; furthermore, a low peroxisomal fatty acid beta-oxidation activity was detected in endothelial cells. Morphological examination by electron microscopy showed that peroxisomes were confined to liver parenchymal cells in untreated animals, but could also be observed in endothelial cells after administration of fenofibrate.  相似文献   

10.
11.
In primary cultures of adult rat hepatocytes maintained in a salts/glucose medium, a more than 100-fold increase in ornithine decarboxylase (EC 4.1.1.17) activity was caused by asparagine and glucagon in a synergistic manner. The synthesis rate of ornithine decarboxylase was determined by [35S]methionine incorporation into the enzyme protein, and the amount of ornithine decarboxylase-mRNA was measured by hybridization with a cloned rat liver ornithine decarboxylase-cDNA. The synthesis rate of ornithine decarboxylase was stimulated more than 20-fold by asparagine and glucagon together, but the amount of ornithine decarboxylase-mRNA was increased only 3-4-fold, indicating that translational stimulation was involved in the induction process. Asparagine alone stimulated the synthesis of ornithine decarboxylase without substantial effect on the amount of ornithine decarboxylase-mRNA, whereas glucagon alone increased the amount of ornithine decarboxylase-mRNA about 3-fold without a detectable change in either enzyme activity or enzyme synthesis. Asparagine, at least in part, also suppressed degradation of ornithine decarboxylase.  相似文献   

12.
Polyamines are associated with fundamental metabolic and functional steps in cell metabolism. The activity of ornithine decarboxylase, the key enzyme in polyamine metabolism, was followed during the preparation of rat liver parenchymal cells and in the isolated cells during incubation. In experiments in which ornithine decarboxylase was not induced in vivo, enzyme activity dropped to barely measurable values during the preparation. An even more drastic loss of enzyme activity was noted in livers in which ornithine decarboxylase activity was stimulated in vivo 20-40fold by previous injection of bovine growth hormone, or thioacetamide or elevated because of circadian rhythmical changes of the enzyme activity. Within the first 20 min of liver perfusion to disintegrate the tissue, ornithine decarboxylase activity decreased by up to 80%. The presence of bovine growth hormone during cell preparation cannot prevent the loss of enzyme activity. Incubation of the isolated cells for periods of up to 240 min did not restore the enzyme activity. Furthermore, incubation of the cells with bovine growth hormone did not induce ornithine decarboxylase, even though the medium was supplemented with amino acids in physiological concentrations. During normal liver perfusion and in contrast to the situation with isolated cells, there is no loss of enzyme activity but a small rise. Following pretreatment of the animals with bovine growth hormone or thioacetamide the highly stimulated activity of ornithine decarboxylase declined slowly during liver perfusion, but never dropped to values lower than normal for perfusion periods of up to 240 min. Moreover, in the intact perfused organ ornithine decarboxylase remains responsive to bovine growth hormone. The experiments demonstrate that enzymatic tissue dispersion by collagenase in particular or the preparation of isolated cells in general drastically alters the metabolic and functional state of rat liver parenchymal cells.  相似文献   

13.
14.
When a single dose of urethan was injected into the peritoneal cavity of rats immediately after partial hepatectomy, DNA synthesis was delayed by 12 h. The induction of ornithine decarboxylase which was induced biphasically following partial hepatectomy was also reduced and delayed by 14–15 h by the administration of urethan. S-Adenosylmethionine decarboxylase activity in urethan-treated rat liver at 20 h and 29 h after operation was significantly lower than that of untreated animals. This enzyme activity was shown to increase thereafter, reaching a higher level than in untreated rats at 37–42 h. Hepatic spermidine content changed biphasically in a manner similar to DNA synthesis. These results suggest that the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase may correlate with DNA synthesis and that an increase of spermidine concentration is necessary to DNA synthesis.  相似文献   

15.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.  相似文献   

16.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

17.
Injection of culture medium of P388D1 cells, a murine macrophage cell line, into mice produced a rapid induction of ornithine decarboxylase in the liver and spleen. The ornithine decarboxylase-inducing factor in the medium was purified by gel-filtration and chromatofocusing. With these procedures, the factor was usually found in the fraction of interleukin 1 (a lymphocyte-activating factor), indicating that the factor is identical with interleukin 1 or a molecule closely related to interleukin 1. The ornithine decarboxylase induction by the factor was suppressed by cycloheximide, but actinomycin D did not suppress the induction, or rather enhanced it. These findings may provide valuable information on the important roles of macrophages in immune responses or in inflammatory reactions.  相似文献   

18.
Transglutaminase and ornithine decarboxylase activities have been assayed at intervals after partial hepatectomy in regenerating liver cells fractionated to obtain nuclear, cytoplasmic-particulate, and cytoplasmic-soluble fractions. Ornithine decarboxylase activity, localized entirely in the cytoplasmic fractions, undergoes a dramatic induction during the first 4 h after partial hepatectomy and remains elevated. This induction is very sensitive to inhibition by cycloheximide and actinomycin D, as previously reported. Transglutaminase activity is localized in both the cytoplasm and the nucleus with the highest specific activity in the nucleus. Nuclear transglutaminase activity approximately doubles in the first 2 h of liver regeneration, apparently as a result of a translocation of enzyme from the cytoplasm to the nucleus. Inhibitor studies indicate that the translocation is not dependent upon protein or RNA synthesis. In the first 2 h, actinomycin D slightly activates transglutaminase activity in the cytoplasmic-particulate and nuclear fractions. Only at 4 h after the onset of regeneration do actinomycin D and cycloheximide show some inhibition of transglutaminase activity indicating de novo synthesis at this time. A broad increase of transglutaminase activity occurs from hours 12–16 to hour 32 after partial hepatectomy in the nuclear and cytoplasmic-particulate fraction. These data suggest the existence of a function for transglutaminase in the nucleus of rat liver cells.  相似文献   

19.
Ornithine decarboxylase (ODC, EC 4.1.1.17) activity is induced in the RAW264 macrophage-like cell line by bacterial lipopolysaccharide (LPS). As little as 0.1 ng/ml LPS promoted an increase in ODC activity, while maximal ODC activity (30-fold above control) was induced with 1.0 microgram/ml LPS. An increase in ODC activity was detectable within 90 min of LPS addition. The LPS-induced increase in ODC activity was prevented by inhibitors of protein and RNA synthesis. The induction of the enzyme by LPS was not dependent on prostaglandin production. However, PGE2 (1 microgram/ml) and 8-bromo-cyclic AMP (1 mM), neither of which had an effect on ODC activity when added alone, each acted synergistically to enhance the LPS induction of ODC activity. Enzyme induction was not associated with an alteration in Km for ornithine, which remained constant at 0.04 mM. The extent of the increase in ODC in response to LPS increased with increasing cellular density. This relationship was dependent not on absolute cell density of the monolayer but on the cell number in relation to medium volume, and this dependence could be extrapolated to the origin. Addition of conditioned media from LPS-stimulated but not unstimulated cultures enhanced the ODC increase in sparsely plated cultures in response to a maximal concentration of LPS. The addition of polymyxin B, a reagent that blocks the effects of LPS, including the increase in ODC activity, did not totally inhibit the conditioned medium stimulation. This data indicates that two signals, LPS and a LPS-induced mediator, are involved in the induction of ODC activity in RAW264 cells.  相似文献   

20.
Ornithine decarboxylase activity increases at least 4–5-fold before DNA synthesis both in synchronous cycling cells and in quiescent cells stimulated to proliferate. The purpose of our experiments was to test whether the transient peaks of ornithine decarboxylase activity in both growth situations were biochemically regulated in a similar manner. We found that the regulation of this particular enzyme activity is distinct in two ways. Firstly, the addition of 2mm-hydroxyurea will block the induction of ornithine decarboxylase in continuously dividing Chinese-hamster ovary cells, while having no effect on ornithine decarboxylase induction in stimulated quiescent cells. Hydroxyurea added after the induction occurs has no effect on the enzyme activity. The apparent half-life of the enzyme is not altered in cells treated with hydroxyurea. Hydroxyurea does not affect the enzyme directly, since incubation of cell homogenates with this drug results in no loss of measurable ornithine decarboxylase activity and hydroxyurea does not markedly alter general RNA- or protein-synthesis rates. The inactivation of ornithine decarboxylase activity by hydroxyurea does not resemble the loss of activity observed with a 90min treatment with spermidine. Thiourea, a less potent inhibitor of ribonucleoside diphosphate reductase, will also inhibit ornithine decarboxylase activity, but to a lesser extent. Secondly, the expression of ornithine decarboxylase in quiescent cells stimulated to proliferate is biphasic as these cells traverse G1 and enter S phase, whereas only one peak of activity is apparent in synchronous cycling G1-phase cells. The time interval between the first peak of ornithine decarboxylase activity and the onset of DNA synthesis is approx. 5h longer in non-dividing cells stimulated to proliferate than in continuously dividing cells. The results suggest that the regulation of ornithine decarboxylase activity is different in the two growth systems in that the induction of ornithine decarboxylase in continuously dividing cells occurs closer in time to DNA synthesis and is dependent on deoxyribonucleoside triphosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号