首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The majority of capsular polysaccharides (K antigens) are linear molecules and their genes have a common functional organisation encoding common steps in capsule biogenesis. However, the K4 antigen is a substituted polymer composed of a chondroitin backbone with a fructose side chain. In order to determine whether K4 biosynthesis uses these common mechanisms the K4 antigen genes were cloned. DNA probes taken from the two conserved regions of the K1 genes were used to isolate one plasmid, pRD1, homologous to both probes. Immunological analysis was used to show that pRD1 directs the production of the substituted K4 antigen on the cell surface. Southern hybridisation was used to show that the cloned genes are organised in the same way as other K antigen gene clusters. We conclude that the branched K4 antigen is handled by the same post-polymerisation mechanisms as other linear K antigens.  相似文献   

2.
3.
An enzyme KfoG with unknown function is coded by the gene kfoG. Gene kfoG belongs to genes from region 2, which are responsible for structure of capsular polysaccharide. Only two enzymes, KfoG and KfoC, coded by genes from region 2, have a glycosyltransferase motif. KfoC is the bifunctional enzyme, which is able to add both GalNAc and GlcUA on nascent polysaccharide, termed chondroitin polymerase. KfoG was predicted to be a fructosyltransferase. The gene that codes the KfoG enzyme was disrupted using homological recombination and absence of this gene was confirmed on both DNA and RNA levels. After disruption no structural changes have been observed, what indicates that fructose branching of the chondroitin backbone is not caused by enzymes, which are coded by genes from region 2 of the K4 capsular gene cluster.  相似文献   

4.
Elongation of glycosaminoglycan chains, such as heparan and chondroitin, is catalyzed by bi-functional glycosyltransferases, for which both 3-dimensional structures and reaction mechanisms remain unknown. The bacterial chondroitin polymerase K4CP catalyzes elongation of the chondroitin chain by alternatively transferring the GlcUA and GalNAc moiety from UDP-GlcUA and UDP-GalNAc to the non-reducing ends of the chondroitin chain. Here, we have determined the crystal structure of K4CP in the presence of UDP and UDP-GalNAc as well as with UDP and UDP-GlcUA. The structures consisted of two GT-A fold domains in which the two active sites were 60 Å apart. UDP-GalNAc and UDP-GlcUA were found at the active sites of the N-terminal and C-terminal domains, respectively. The present K4CPstructures have provided the structural basis for further investigating the molecular mechanism of biosynthesis of chondroitin chain.  相似文献   

5.
6.
7.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

8.
A tetra- and a pentasaccharide were synthesized as analogues to the structure of the Streptococcus pneumoniae type 37 capsular polysaccharide, a homopolymer with a disaccharide-repeating unit of -->3)[beta-D-Glcp-(1-->2)]-beta-D-Glcp-(1-->. Synthesis of the tetrasaccharide employed a beta-(1-->2)-diglycosylation of a beta-(1-->3)-linked disaccharide. Subsequently, the pentasaccharide was synthesized from a suitably protected tetrasaccharide derivative by a beta-(1-->3)-extension at O-3'. Steric crowding was found to be an important factor in the formation of the pentasaccharide.  相似文献   

9.
Spontaneous mutants of Rhizobium leguminosarum biovar viciae strain C1204b were selected for their ability to tolerate 0.2 M NaCl, a growth-inhibiting level of salt for the parental strain. Transposon-mediated salt-sensitive mutants of strain C1204b were screened for their inability to grow in 0.08 M NaCl. Quantitation of the free-amino acid pools in the mutants grown in NaCl revealed a dramatic increase in glutamine, serine, glutamate and proline, and to a lesser extent alanine and glycine in the salt-tolerant mutants in comparison with the parental strain exposed to NaCl; but only glutamate and proline increased in the salt-sensitive mutants under NaCl stress. Extracellular polysaccharide levels were quantitated for the salt-tolerant mutants and determined to be approximately two-fold higher than for the parental strain. Although the mutations that occurred in the NaCl-tolerant and NaCl-sensitive strains did not interfere with nodule formation, no nitrogenase activity could be observed in the NaCl tolerant mutants as evaluated by acetylene reduction.  相似文献   

10.
Capsular polysaccharides were extracted from Shewanella oneidensis strain MR-4, grown on two different culture media. The polysaccharides were analyzed using 1H and 13C NMR spectroscopy, and the following structure of the repeating unit was established: [structure: see text] where the residue of 4-amino-4,6-dideoxy-D-glucose (Qui4N) was substituted with different N-acyl groups depending on the growth media. All monosaccharides are present in the pyranose form. In the PS from cells grown on enriched medium (trypticase soy broth, TSB) aerobically it was N-acylated with 3-hydroxy-3-methylbutyrate (60%) or with 3-hydroxybutyrate (40%), whereas in the PS from cells grown on minimal medium (CDM) aerobically it was acylated mostly with 3-hydroxybutyrate (>90%).  相似文献   

11.
Hyaluronan is a ubiquitous glycosaminoglycan of high molecular weight that acts as a structural component of extracellular matrices and mediates cell adhesion. There have been numerous recent reports that fragments of hyaluronan have different properties compared to the intact molecule. Though many of these results may be genuine, it is possible that some activities are due to minor components in the preparations used. Therefore, it is important that well-characterized and highly purified oligosaccharides are used in cell biological and structural studies so that erroneous results are avoided. We present methods for the purification of hyaluronan oligomers of defined size using size exclusion and anion-exchange chromatography following digestion of hyaluronan with testicular hyaluronidase. These preparations were characterized by a combination of electrospray ionization mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight analysis, and fluorophore-assisted carbohydrate electrophoresis. Hyaluronan oligomers ranging from tetrasaccharides to 34-mers were separated. The 4- to 16-mers were shown to be homogeneous with regard to length but did contain varying amounts of chondroitin sulfate. This contaminant could have been minimized if digestion had been performed with medical-grade hyaluronan rather than the relatively impure starting material used here. The 18- to 34-mer preparations were mixtures of oligosaccharides of different lengths (e.g., the latter contained 87% 34-mer, 10% 32-mer, and 3% 30-mer) but were free of detectable chondroitin sulfate. In addition to oligomers with even numbers of sugar rings, novel 5- and 7-mers with terminal glucuronic acid residues were identified.  相似文献   

12.
The capsular polysaccharide of Klebsiella serotype K15 has been investigated mainly by methylation analysis, characterisation of the oligosaccharides obtained by partial acid hydrolysis, periodate oxidation, enzymic degradation, and 1H- and 13C-n.m.r. spectroscopy, and shown to have the hexasaccharide repeating-unit 1. The glycan does not contain any pyruvic acetal or O-acetyl substituents. (formula; see text)  相似文献   

13.
The structures of chondroitin sulfate A from whale cartilage and chondroitin sulfate C from shark cartilage have been examined with the aid of the chondroitinases AC and C from Flavobacterium heparinum. The analyses of the products formed from the chondroitin sulfates by the action of the chondroitinases have shown that three types of oligosaccharides compose the structure of chondroitin sulfate A, namely, a dodeca-, hexa- and a tetra-saccharide, containing five, two and one 4-sulfated disaccharides per 6-sulfated disaccharide residue, respectively. The polymer contains an average of 3 mol of each oligosaccharide per mol of chondroitin sulfate A. Each mol of chondroitin sulfate C contains an average of 5 mol of 4-sulfated disaccharide units. A tetra-saccharide containing one 4-sulfated disaccharide and one 6-sulfated disaccharide was isolated from this mucopolysaccharide by the action of the chondroitinase C, indicating that the 4-sulfated disaccharides are not linked together in one specific region but spaced in the molecule.  相似文献   

14.
The Gram-negative bacterium under study belongs to the genus Kaistella. It was isolated from a soil sample of the Haian Island in China, and it produces a lipophilic polysaccharide characterised by a branched hexasaccharide repeating unit, counting four 6-deoxy-alpha-l-mannose (Rha) residues, one 2-acetamido-2-deoxy-beta-d-glucose (GlcNAc) and a 2-acetamido-2,6-dideoxy-beta-d-galactose (FucNAc) unit. The structure of the repeating unit, assigned through 2D-NMR spectroscopy, is herein reported for the first time: [carbohydrate structure: see text]  相似文献   

15.
The chemical structure of the K4-specific capsular polysaccharide (K4 antigen) of Escherichia coli O5:K4:H4 was elucidated by composition, carboxyl reduction periodate oxidation methylation nuclear-magnetic-resonance spectroscopy and enzymatic cleavage. The polysaccharide consists of a backbone with the structure----3)-beta-D-glucuronyl-(1,4)-beta-D-N-acetylgalactosaminyl(1- to which beta-fructofuranose is linked at C-3 of glucuronic acid. Mild acid hydrolysis liberated fructose and converted the K4 antigen into a polysaccharide which has the same structure as chondroitin. The defructosylated polysaccharide was a substrate for hyaluronidase and chondroitinase. The serological reactivity of the K4 polysaccharide was markedly reduced after defructosylation.  相似文献   

16.
【目的】克罗诺杆菌(Cronobacter)是一类以奶粉为主要传播媒介的食源性致病菌,能够引起坏死性小肠结肠炎、脑膜炎、菌血症等疾病。荚膜是细菌常见的毒力因子,本研究对4种K:CA型别的Cronobacter荚膜多糖进行分析,以期发现荚膜型别与荚膜多糖的单糖组成的关联规律。【方法】本研究通过苯酚-硫酸法和氢核磁共振(1HNMR)分别对28株Cronobacter(4种K:CA型别)荚膜多糖的产量和单糖组成进行分析。【结果】文章研究了不同培养基、培养时间对Cronobacter荚膜多糖产生的影响,确定了最佳培养条件为在牛奶琼脂培养基中培养48.0h,而且不同条件下未改变Cronobacter荚膜多糖的单糖组成。本研究进一步发现,4种K:CA型别菌株间的荚膜多糖产量具有显著差异,K2:CA2型别的荚膜多糖平均产量最高。其中,2株荚膜多糖产量高的菌株C. sakazakii ATCC 12868和C. sakazakii ATCC 29004也均为K2:CA2型别,产量分别为19.6%和28.4%。此外,通过1H NMR测定出28株Cronobacter的荚膜多糖中的单...  相似文献   

17.
The extracellular polysaccharide from Klebsiella K63 is unique in having acetic and formic ester groups attached to the d-galactopyranosyluronic residues in the trisaccharide repeating-sequence. These O-acyl substituents are shown to be some what resistant to mild hydrolysis by both acid and alkali. Bacteriophage-induced depolymerization of the polysaccharide generated a series of acylated oligosaccharides comprising one, or more, repeating unit(s). By mild hydrolysis with acid, the same series of oligomers was released from the polysaccharide, together with the corresponding non-acylated compounds and the expected acylated and non-acylated aldobiouronic acids. A study of these oligosaccharides, as well as of a number of their related compounds, is described, with particular emphasis on the methods used to locate the formic and acetic ester groups. The location of the O-acyl substituents on the galactosyluronic residues was further supported by the results obtained from the high-resolution, 400-MHz, p.m.r. spectra and 13C-n.m.r. spectra of a number of the oligosaccharides.  相似文献   

18.
A linear sulfated fucan with a regular repeating sequence of [3)-alpha-L-Fucp-(2SO4)-(1-->3)-alpha-L-Fucp-(4SO4)-(1-->3)-alpha-L-Fucp-(2,4SO4)-(1-->3)-alpha-L-Fucp-(2SO4)-(1-->]n is an anticoagulant polysaccharide mainly due to thrombin inhibition mediated by heparin cofactor II. No specific enzymatic or chemical method is available for the preparation of tailored oligosaccharides from sulfated fucans. We employ an apparently nonspecific approach to cleave this polysaccharide based on mild hydrolysis with acid. Surprisingly, the linear sulfated fucan was cleaved by mild acid hydrolysis on an ordered sequence. Initially a 2-sulfate ester of the first fucose unit is selectively removed. Thereafter the glycosidic linkage between the nonsulfated fucose residue and the subsequent 4-sulfated residue is preferentially cleaved by acid hydrolysis, forming oligosaccharides with well-defined size. The low-molecular-weight derivatives obtained from the sulfated fucan were employed to determine the requirement for interaction of this polysaccharide with heparin cofactor II and to achieve complete thrombin inhibition. The linear sulfated fucan requires significantly longer chains than mammalian glycosaminoglycans to achieve anticoagulant activity. A slight decrease in the molecular size of the sulfated fucan dramatically reduces its effect on thrombin inactivation mediated by heparin cofactor II. Sulfated fucan with approximately 45 tetrasaccharide repeating units binds to heparin cofactor II but is unable to link efficiently the plasma inhibitor and thrombin. This last effect requires chains with approximately 100 or more tetrasaccharide repeating units. We speculate that the template mechanism may predominate over the allosteric effect in the case of the linear sulfated fucan inactivation of thrombin in the presence of heparin cofactor II.  相似文献   

19.
Structure of a capsular polysaccharide isolated from Salmonella enteritidis   总被引:1,自引:0,他引:1  
Salmonella enteritidis is a food-borne enteric human pathogen that can form a complex protective extracellular matrix. We describe here a component of this matrix which is distinct from other known salmonella extracellular polysaccharides such as cellulose and colanic acid. We have used glycosyl composition and linkage analysis, as well as 1D and 2D NMR spectroscopy to determine the structure of this polysaccharide. We propose that the primary saccharide in the S. enteritidis capsule has a branched tetrasaccharide repeating unit having the following structure: -->3)-alpha-D-Galp-(1-->2)-[alpha-Tyvp-(1-->3)]-alpha-D-Manp-(1-->4)-alpha-L-Rhap-(1-->. This structure is partially substituted on both tyvelose and galactose with a glucose-containing side chain. It further bears considerable similarity to the O antigen from this organism, a feature found in a number of other capsules from Gram-negative bacteria. In addition, we have detected fatty acids at levels that indicate the presence of a lipid anchor.  相似文献   

20.
Summary The production of the K4 polysaccharide was obtained for the first time extracellularly from a strain of Escherichia coli. The set up of the fermentation conditions led to the maximum fermentation yield, as extracellular K4, after 20 h. Purification and characterization of this K4 resulted in 200 mg/L of highly purified K4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号