首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canine babesiosis is an important worldwide, tick-borne disease caused by hemoprotozoan parasites of the genus Babesia. Babesia gibsoni is the predominant species that causes canine babesiosis in Taipei, Taiwan. It is a small pleomorphic intraerythrocytic parasite that can cause erythrocyte destruction and hemolytic anemia. Efficacy of oral administration of a doxycycline-enrofloxacin-metronidazole combination with and without injections of diminazene diaceturate in the management of naturally occurring canine babesiosis caused by B. gibsoni was evaluated retrospectively. The overall efficacy of this combination of doxycycline-enrofloxacin-metronidazole in conjunction with and without administration of diminazene diaceturate was 85.7% and 83.3%, respectively; with a mean recovery time of 24.2 and 23.5 days, respectively. Concomitant use of intramuscular diminazene diaceturate may not improve the efficacy of a doxycycline-enrofloxacin-metronidazole combination in management of canine babesiosis caused by B. gibsoni.  相似文献   

2.
Malaria, quinine and red cell lysis.   总被引:1,自引:0,他引:1  
H Laser  P Kemp  N Miller  D Lander  R Klein 《Parasitology》1975,71(2):167-181
An hypothesis is presented to explain the red cell lysis which accompanies an acute malarial infection, as well as the mode of action of certain schizonticidal drugs in the quinoline and acridine series. Quinine and a number of other antimalarial drugs have been found to counteract the inhibition by protein of fatty acid-induced lysis, when tested in an in vitro system. It is suggested that these schizonticides exert their chemotherapeutic effect by inducing the premature lysis of the parasitized red cell, as a result of relieving the inhibition by protein of haemolysis.  相似文献   

3.
The aim of this study was to evaluate the utilization of a standard treatment with diminazene aceturate against the infection caused by Trypanosoma evansi, associated to sodium selenite and vitamin E. In vitro tests showed trypanocidal effect related to the treatment with diminazene aceturate and sodium selenite, but vitamin E had no harmful effect on the trypanosomes. In vivo experiments utilized a total of 72 adult outbreed females rats, separated into 9 groups (A, B, C, D, E, F, G, H and I), 8 animals each. Group A was the uninfected group; groups B to I were infected with 0.2 mL of blood containing 106 trypanosomes. Parasitemia was estimated daily by microscopic examination of blood smears. Group B served as positive control; group C was treated with diminazene aceturate; group D with sodium selenite; group E with vitamin E; group F received an association of diminazene aceturate and sodium selenite; group G received an association of diminazene aceturate and vitamin E; group H received an association of diminazene aceturate, sodium selenite and vitamin E, and group I received an association of sodium selenite and vitamin E. Diminazene aceturate was administrated in a single dose on the 3rd day post infection (PI). Sodium selenite and vitamin E were administered at the 3rd and 23rd day PI. In vivo tests showed increase of longevity in groups treated with diminazene aceturate associated with sodium selenite (groups F and H). No difference was found between groups C and E, thus the vitamin E did not increase the efficacy of treatment against T. evansi when associated to diminazene aceturate. The curative efficacy of treatments was 37.5, 87.7, 37.7 and 75% to the groups C, F, G and H, respectively. Other treatments showed no efficacy. The sodium selenite when combined with chemotherapy may represent an alternative in the treatment of trypanosomosis.  相似文献   

4.
Continuous cultivation of the bovine hemoparasites Babesia bovis and Babesia bigemina was developed as an in vitro microtest to assess parasite susceptibility to babesicidal compounds. Reproducibility of parasite multiplication rates was independent of culture size, making it possible to use a microscale of 100 microliters for each test sample. Inhibitory concentrations (IC50s) of a commonly used babesicide, quinuronium sulfate, evaluated by this in vitro method were found to be 5 x 10(-8) g/ml for B. bovis and 2 x 10(-9) g/ml for B. bigemina.  相似文献   

5.
L. acidophilus La-14 produces bacteriocin active against L. monocytogenes ScottA (1600 AU/ml) in MRS broth at 30°C or 37°C. The bacteriocin proved inhibitory to different serological types of Listeria spp. Antimicrobial activity was completely lost after treatment of the cell-free supernatant with proteolytic enzymes. Addition of bacteriocin produced by L. acidophilus La-14 to a 3 h-old culture of L. monocytogenes ScottA repressed cell growth in the following 8h. Treatment of stationary phase cells of L. monocytogenes ScottA (107-108 CFU/ml) by the bacteriocin resulted in growth inhibition. Growth of L. acidophilus La-14 was not inhibited by commercial drugs from different generic groups, including nonsteroidal anti-inflammatory drugs (NSAID) containing diclofenac potassium or ibuprofen arginine. Only one non-antibiotic drug tested, Atlansil (an antiarrhythmic agent), had an inhibitory effect on L. acidophilus La-14 with MIC of 2.5 mg/ml. L. acidophilus La-14 was not affected by drugs containing sodium or potassium diclofenac. L. acidophilus La-14 shows a good resistance to several drugs and may be applied in combination for therapeutic use.  相似文献   

6.
A Trypanosoma brucei brucei stock resistant to diminazene aceturate, isometamidium chloride, quinapyramine sulfate, and Mel B was grown in vitro and its response to these drugs compared to that of a drug-sensitive trypanosome stock. There was little if any change of drug sensitivity after in vitro propagation as bloodstream forms for 120, 177, and 275 days and after in vitro transformation of bloodstream forms into procyclic, epimastigote, and finally metacyclic forms. Drug resistance was stable during in vitro maintenance in the absence of drugs in both culture systems. The response of resistant and sensitive T. b. brucei to diminazene in vitro correlated with their sensitivity pattern in vivo. Thus, in vitro techniques can be used to study drug resistance in trypanosomes.  相似文献   

7.
Infections by Cryptococcus strains other than C. neoformans have been detected in immunocompromised patients. Of these strains, three are considered human pathogens: C. albidus, C. laurenttii, and C. uniguttulatus. This study deals with the in vitro susceptibility of Cryptococcus to drugs such as amphotericin B, itraconazole, fluconazole, and 5-fluorocytosine. Environmental Cryptococcus isolates (50) distributed as follows: C. neoformans var. neoformans (16), C. albidus (17), C. laurentii (14), and C. uniguttulatus (3) were evaluated by the micro and macrodilution techniques, according to EUCAST and NCCLS recommendations, respectively. Considering both methodologies the respective minimal inhibitory concentrations (MIC) were 0.125 and 2 microg/ml for amphotericin B, 0.06 and 8 microg/ml for itraconazole, and 0.5 and more than 64 microg/ml for fluconazole and 5-fluorocytosine. Agreement percentages for the two methodologies were 100% for amphotericin B and fluconazole for all the strains tested. For itraconazole, the agreement percentage was 81.3% in the C. neoformans strain and 100% for all the others. All species had a agreement percentage of 94.1 to 100% when susceptibility to 5-fluorocytosine was tested. It is concluded that environmental isolates of C. neoformans var. neoformans, C. albidus, C. laurentii, and C. uniguttulatus may show high MICs against certain drugs, suggesting in vitro primary resistance to the antifungals tested.  相似文献   

8.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

9.
We examined innate immune responses to the intracellular bacterium Rhodococcus equi and show that infection of macrophages with intact bacteria induced the rapid translocation of NF-kappa B and the production of a variety of proinflammatory mediators, including TNF, IL-12, and NO. Macrophages from mice deficient in MyD88 failed to translocate NF-kappa B and produced virtually no cytokines in response to R. equi infection, implicating a TLR pathway. TLR4 was not involved in this response, because C3H/HeJ macrophages were fully capable of responding to R. equi infection, and because RAW-264 cells transfected with a dominant negative form of TLR4 responded normally to infection by R. equi. A central role for TLR2 was identified. A TLR2 reporter cell was activated by R. equi, and RAW-264 cells transfected with a dominant negative TLR2 exhibited markedly reduced cytokine responses to R. equi. Moreover, macrophages from TLR2(-/-) mice exhibited diminished cytokine responses to R. equi. The role of the surface-localized R. equi lipoprotein VapA (virulence-associated protein A), in TLR2 activation was examined. Purified rVapA activated a TLR2-specific reporter cell, and it induced the maturation of dendritic cells and the production of cytokines from macrophages. Importantly, TLR2(-/-)-deficient but not TLR4(-/-)-deficient mice were found to be compromised in their ability to clear a challenge with virulent R. equi. We conclude that the efficient activation of innate immunity by R. equi may account for the relative lack of virulence of this organism in immunocompetent adults.  相似文献   

10.
Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.  相似文献   

11.
BackgroundCandida albicans-related infections are common infections in clinic, among which biofilm-associated infections are most devastating and challenging to overcome. Myricetin (MY) is a plant-derived natural product with various pharmacological activities. Its anti-biofilm effect against C. albicans and its ability to increase the antifungal effect of miconazole nitrate (MN) were unclear and yet need to be explored.Hypothesis/PurposeIn this study the anti-biofilm effect of MY and its ability to increase the antifungal effect of MN were investigated in vitro and in vivo.Study design and methodsMY or/and MN were incorporated into a thermosensitive hydrogel (TSH) of poloxamer. The safety of MY or/and MN loaded TSHs towards human umbilical vein endothelial cells (HUVEC) was evaluated by a MTT assay and the in vivo safety towards mice knees was confirmed by histopathological examination. The anti-biofilm effect of MY and its ability to increase the antifungal effect of MN were investigated in vitro with C. albicans ATCC 10231 by broth microdilution method, crystal violet staining and scanning electron microscopy (SEM), as well as in vivo in an established mouse model of periprosthetic joint infection (PJI) by SEM, histological analysis, microorganism culture and detection of the serum levels of interleukin-6 (IL-6). The mechanism of action of MY was analyzed by qRT-PCR assay with C. albicans SC5314.ResultsOur results showed that MY and MN incorporated into TSHs exhibited good stability and safety, excellent temperature sensitivity and controlled drug release property. MY (5-640 µg/ml) exhibited no effect on C. albicans cell viability and MY (≥80 µg/ml) showed a significantly inhibitory effect on biofilm formation. MIC50 (the lowest concentrations of drugs resulting in 50% decrease of C. albicans growth) and MIC80 (the lowest concentrations of drugs resulting in 80% decrease of C. albicans growth) of MN were respectively decreased from 2 µg/ml to 0.5 µg/ml and from 4 µg/ml to 2 µg/ml when used in combination with MY (80 µg/ml). The mouse PJI was effectively prevented by MY and MN incorporated into TSH.ConclusionsLocal application of MY and MN incorporated into TSH might be useful for clinical biofilm-associated infections.  相似文献   

12.
The present study investigated the involvement of host sialic acids in the erythrocyte infection by two equine Babesia parasites, Babesia equi and Babesia caballi. We observed that the in vitro growth of both parasites is influenced by the removal of sialic acids from the surface of equine erythrocytes (RBC). When the parasites were cultured with neuraminidase (Nm, EC 3.2.1.18)-treated RBC, in which alpha2-3-linked sialic acid residues were removed from four membrane proteins of the RBC, B. caballi showed a significant inhibition of the erythrocyte invasion, while the intracellular development of B. equi seemed to be significantly affected. The possible involvement of host sialic acid in the erythrocyte invasion by B. caballi was also supported by a significant reduction in the parasite growth accompanied by an increased number of extracellular merozoites after the addition of exogenous 3'-sialyllactose (Neu5Acalpha(2-3)Galbeta(1-4)Glc) into the culture. These results suggest that the alpha2-3-linked sialic acid residues on host RBC play important roles in the erythrocyte infections by B. caballi and B. equi.  相似文献   

13.
Tanyildizi S  Türk G 《Theriogenology》2004,61(2-3):529-535
Effects of diminazene aceturate and ceftriaxone disodium were evaluated on sperm quality of rams. Daily intramuscular injections of diminazene (6 mg/kg) or ceftriaxone (28.5 mg/kg) were given to each of seven Akkaraman rams assigned per drug for two days. Semen samples were collected from the rams at post-treatment 1, 4, 24, 48, 72, 144, 288 and 336 h and examined for sperm characteristics and hyaluronidase activity. Results showed that use of ceftriaxone and diminazene caused significant (P<0.01) decreases in sperm concentration, volume and motility compared to control group within 288 h post-treatment. In addition, hyaluronidase activity increased significantly (P<0.01) in semen of rams treated with ceftriaxone while remained unchanged in those received diminazene. In conclusion, diminazene aceturate and ceftriaxone disodium did not have any deleterious effect on hyaluronidase enzyme. However, both drugs caused impairment of sperm in rams during the 288 h.  相似文献   

14.
AIMS: To screen 16 isoflavonoids isolated from Erythrina variegata (Leguminosae) for their antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS: The roots of E. variegata were macerated with acetone. The chloroform-soluble fraction of the residue was subjected to repeated silica gel column chromatography followed by elution with various solvents. Structures of the isolated compounds were determined by extensive spectroscopic studies. Each compound was dissolved in dimethyl sulphoxide and added to agar plates (final concentration 1.56-100 microg ml(-1) and suspensions of MRSA spotted onto the agar plates to determine the minimum inhibitory concentration (MIC). Repeated silica gel chromatography yielded 16 compounds and spectroscopic studies revealed that all were isoflavonoids. Whilst 14 compounds showed antibacterial activity in this concentration range, the MIC values varied significantly among them. Of the active compounds, 3,9-dihydroxy-2,10-di(gamma,gamma-dimethylallyl)-6a,11a-dehydropterocarpan (erycristagallin) and 9-hydroxy-3-methoxy-2-gamma,gamma-dimethylallylpterocarpan (orientanol B) exhibited the highest activity with MIC values of 3.13-6.25 microg ml(-1). CONCLUSIONS: Erycristagallin and orientanol B showed the highest anti-MRSA activity (3.13-6.25 microg ml(-1). SIGNIFICANCE AND IMPACT OF THE STUDY: Erycristagallin and orientanol B could be leading compounds for phytotherapeutic agents against MRSA infections.  相似文献   

15.
In previous paper, we have reported the synthesis and the cytotoxic effect of 1,3-dihydroxy-9,10-anthraquinone derivatives. For further design of more potent compounds, a new series of 1-hydroxy-3-(3-alkylaminopropoxy)-9,10-anthraquinones and 3-(3-alkylaminopropoxy)-9,10-anthraquinones have been synthesized. The cytotoxicity of synthetic compounds were evaluated against human Hep G2, Hep 3B and HT-29 cells. Almost all compounds indicated significant inhibitory activity against Hep G2, Hep 3B and HT-29 cell lines in vitro. Compound 5 exhibited selective cytotoxicity against Hep G2 in a concentration-dependent manner with ED50 value of 1.23 +/- 0.05 microM. Structure-activity analysis revealed that most of the 1-hydroxy-3-(3-alkylamino-2-hydroxypropoxy)-9,10-anthraquinone showed stronger cytotoxic effects than those of 1-hydroxy-3- or 3-(3-alkylaminopropoxy)-9,10-anthraquinones against Hep 3B cell line in vitro. A sub-G1 cell stage and DNA fragmentation in MCF-7 cells were significantly observed after 72 h incubation with selective compound 16. The results show that 16 causes cell death by apoptosis.  相似文献   

16.
In the current study, the results of antibacterial, antifungal, and antiviral activity tests of four flavonoid derivatives, scandenone (1), tiliroside (2), quercetin-3,7-O-alpha-L-dirhamnoside (3), and kaempferol-3,7-O-alpha-L-dirhamnoside (4), are presented. Antibacterial and antifungal activities of these compounds were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis, as well as the fungus Candida albicans by a micro-dilution method. On the other hand, both DNA virus Herpes simplex (HSV) and RNA virus Parainfluenza-3 (PI-3) were employed for antiviral assessment of the compounds using Madin-Darby bovine kidney and Vero cell lines. According to our data, all of the compounds tested were found to be quite active against S. aureus and E. faecalis with MIC values of 0.5 microg/ml, followed by E. coli (2 microg/ml), K. pneumoniae (4 microg/ml), A. baumannii (8 micro/g/ml), and B. subtilis (8 microg/ml), while they inhibited C. albicans at 1 microg/ml as potent as ketoconazole. However, only compound 3 displayed an antiviral effect towards PI-3 in the range of 8-32 microg/ml of inhibitory concentration for cytopathogenic effect (CPE).  相似文献   

17.
Up to now an increasing number of antibiotic-resistant bacteria have been reported and thus new natural therapeutic agents are needed in order to eradicate these pathogens. Through the discovery of plants such as Crataegus tanacetifolia (Lam.) Pers that have antimicrobial activity, it will be possible to discover new natural drugs serving as chemotherapeutic agents for the treatment of nosocomial pathogens and take these antibiotic-resistant bacteria under control. The objective of the present study was to determine antimicrobial activity and the activity mechanism of C. tanacetifolia plant extract. The leaves of C. tanacetifolia, which is an endemic plant, were extracted using methanol and tested against 10 bacterial and 4 yeast strains by using a drop method. It was observed that the plant extract had antibacterial effects on Bacillus subtilis, Shigella, Staphylococcus aureus, and Listeria monocytogenes among the microorganisms that were tested. Minimum inhibitory concentration (MIC) results obtained at the end of an incubation of 24 h were found to be > or =6.16 mg ml(-1) for B. subtilis, < 394 mg ml(-1) for Shigella, and > or =3.08 mg ml(-1) for L. monocytogenes and S. aureus and minimum bactericidal concentration (MBC) were found as > or =24.63 mg ml(-1) for B. subtilis, > or =394 mg ml(-1) for Shigella, > or =6.16 mg ml(-1) for L. monocytogenes, and > or =98.5 mg ml(-1) for S. aureus. According to the MBC results, it was found that the plant extract had bactericidal effects and in order to explain the activity mechanism and cell deformation of bacterial strains treated with plant extract, the scanning electron microscopy (SEM) was used. The results of SEM showed that the treated cells appeared shrunken and there was degradation of the cell walls. This study, in which the antibacterial effect of C. tanacetifolia was demonstrated, will be a base for further investigations on advanced purification and effect mechanism of action of its active compounds.  相似文献   

18.
R1-20, a novel mAb reacting with a cell surface Ag on normal human lymphocytes and leukemic cell lines, was shown to induce homotypic cell aggregation in leukemic cell lines. This phenomenon was specific to mAb R1-20 because antibodies recognizing CD2, CD7, CD28, and HLA-ABC failed to exhibit homotypic cell aggregation. Induction of aggregation by mAb R1-20 occurred at 37 degrees C, but not at 4 degrees C and required cytoskeletal integrity. Sodium azide, a metabolic inhibitor, had no effect on the aggregation. Distinct from lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interaction in which divalent cations are essential elements, R1-20-mediated aggregation was not abolished with EDTA treatment. The R1-20 Ag was determined as a molecule of M(r) 100 to 110 kDa in immunoprecipitation and immunoblotting methods, under both reducing and nonreducing conditions. The molecular composition is quite different from that of any known integrin molecule. The R1-20 Ag was expressed on resting and activated T Lymphocytes as well as on normal B lymphocytes. Monocytes and granulocytes had no detectable R1-20 Ag. Among the leukemia-derived cell lines we used, mAb R1-20 reacted with 18 of 32 T cell lines, 2 of 20 B cell lines, 2 of 3 non-T-non-B cell lines, 2 of 7 myelomonocytic cell lines, and 2 of 3 nonlymphoid-nonmyeloid cell lines. All EBV-transformed B cell lines examined (10 cell lines) were R1-20+. The spectrum of reactivity among the cell lines tested was different from that of known antiadhesion antibodies tested. All these findings indicate that the Ag recognized by mAb R1-20 may represent a new type of cell adhesion molecule.  相似文献   

19.
The putative candicidal activity of resveratrol is currently a matter of controversy. Here, the antifungal activity as well as the antioxidant response of resveratrol against Candida albicans, have been tested in a set of strains with a well-established genetic background At the doses usually employed in antifungal tests (10-40 μg/ml), resveratrol has no effect on the exponential growth of the C. albicans CAI.4 strain, a tenfold increase (400 μg/ml) was required in order to record a certain degree of cell killing, which was negligible in comparison with the strong antifungal effect caused by the addition of amphotericin B (5 μg/ml). An identical pattern was recorded in the prototrophic strains of C. albicans SC5314 and RM-100, whereas the oxidative sensitive trehalose-deficient mutant (tps1/tps1 strain) was totally refractory to the presence of resveratrol. In turn, the serum-induced yeast-to-hypha transition remained unaffected upon addition of different concentrations of resveratrol. Determination of endogenous trehalose and catalase activity, two antioxidant markers in C. albicans; revealed no significant changes in their basal contents induced by resveratrol. Collectively, our results seem to dismiss a main antifungal role as well as the therapeutic application of resveratrol against the infections caused by C. albicans.  相似文献   

20.
Y Kuroda 《Mutation research》1975,30(2):239-248
Disodium 9-(3',4',5',6'-tetrachloro-o-carboxyphenyl)-6-hydroxy-2,4,5,7-tetrabromo-3-isoxanthone (phloxine), a red dye used as a food additive, was tested for its activity to induce 8-azaguanine (8AG) resistant mutations in cultured human embryonic cells. Phloxine had a severe cytotoxic effect on the cells at concentrations of 1 to 10 mug/ml. At concentrations of more than 30 mug/ml of phloxine no further decrease in cell survival was found. This cytotoxic effect of phloxine was not dependent on the duration of treatment. After treatment with phloxine for 2 h division of cells in normal medium was inhibited for 120 h. When cells were treated with phloxine at various concentrations for 2 h, cultured in normal medium for 48 h, and then selected with 30 mug/ml of 8AG, an increase in the induced mutation frequency was found. This increase in mutation frequency was dependent on the concentration of phloxine used as a mutagen and treatment with 100 mug/ml of phloxine increased the frequency to six times that in untreated cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号