首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of the beta-glycosidase inhibitor D-gluconohydroximo-1,5-lactone-N-phenylurethane (PUG) on the kinetic and ultracentrifugation properties of glycogen phosphorylase has been studied. Recent crystallographic work at 2.4 A resolution [D. Barford et al. (1988) Biochemistry 27, 6733-6741] has shown that PUG binds in the catalytic site of phosphorylase b crystals with its gluconohydroximolactone moiety occupying a position similar to that observed for other glucosyl compounds and the N-phenylurethane side chain fitting into an adjacent cavity with little conformational change in the enzyme. In solution, PUG was shown to be a potent inhibitor of phosphorylase b, directly competitive with alpha-D-glucopyranose 1-phosphate (glucose-1-P) (Ki = 0.40 mM) and noncompetitive with respect to glycogen and AMP. When PUG was tested for synergistic inhibition in the presence of caffeine, the Dixon plots of reciprocal velocity versus PUG concentration at different fixed caffeine concentrations provided intersecting lines with interaction constant (alpha) values of 0.95-1.38, indicating that the binding of one inhibitor is not significantly affected by the binding of the other. For glycogen phosphorolysis, PUG was noncompetitive with respect to phosphate, suggesting that it can bind to the central enzyme-AMP-glycogen-phosphate complex. PUG was shown to inhibit phosphorylase alpha (without AMP) activity (Ki = 0.43 mM) in a manner similar to that of the b form. However, in the presence of AMP, PUG exhibited complex kinetics, acting as a noncompetitive inhibitor with respect to glucose-1-P, while a twofold decrease of PUG binding to the enzyme-AMP-glycogen complex was observed. Ultracentrifugation experiments demonstrated that PUG does not cause any significant dissociation of phosphorylase alpha tetramer. Furthermore the dimerization of phosphorylase alpha by glucose is completely prevented in the presence of PUG. These observations are consistent with PUG binding to both the R and the T conformations of phosphorylase.  相似文献   

2.
Hepatic glucose production is increased in people with type 2 diabetes. Glucose released from storage in liver glycogen by phosphorylase accounts for approximately 50% of the glucose produced after an overnight fast. Therefore, understanding how glycogenolysis in the liver is regulated is of great importance. Toward this goal, we have determined the kinetic characteristics of recombinant human liver glycogen phosphorylase a (HLGPa) (active form) and compared them with those of the purified rat enzyme (RLGPa). The Michaelis-Menten constant (K(m)) of HLGPa for P(i), 5 mM, was about fivefold greater than the K(m) of RLGPa. Two P(i) (substrate) concentrations were used (1 and 5 mM) to cover the physiological range for P(i). Other effectors were added at estimated intracellular concentrations. When added individually, AMP stimulated, whereas ADP, ATP and glucose inhibited, activity. These results were similar to those of the RLGPa. However, glucose inhibition was about twofold more potent with the human enzyme. UDP-glucose, glucose 6-phosphate, and fructose 1-phosphate were only minor inhibitors of both enzymes. We reported previously that when all known effectors were present in combination at physiological concentrations, the net effect was no change in RLGPa activity. However, the same combination reduced HLGPa activity, and the inhibition was glucose dependent. We conclude that a combination of the known effectors of phosphorylase a activity, when present at estimated intracellular concentrations, is inhibitory. Of these effectors, only glucose changes greatly in vivo. Thus it may be the major regulator of HLGPa activity.  相似文献   

3.
A number of aliphatic amines was shown to stimulate AMP-dependent activity of phosphorylase b. The extent of stimulation depends on the molecular structure of amines. For linear amines, the longer the linear chain, the greater the stimulation observed. High concentrations of amines were able to induce a small activation of phosphorylase b in the absence of AMP. Kinetic studies of phosphorylase b indicated that the presence of n-hexylamine (a) results in lowering Km values for AMP and glucose 1-phosphate, (b) increases maximal velocity of the enzyme, and (c) modifies the glucose 6-phosphate, ATP, caffeine, and glucose binding sites of the enzyme by increasing the inhibition constants for these inhibitors. In contrast, the activity of phosphorylase b' is not altered by n-hexylamine. This fact suggests the possibility that amines interact with the N-terminal tail of phosphorylase b chain.  相似文献   

4.
Increases in liver glycogen phosphorylase activity, along with inhibition of glycogen synthetase and phosphofructokinase-1, are associated with elevated cryoprotectant (glucose) levels during freezing in some freeze-tolerant anurans. In contrast, freeze-tolerant chorus frogs, Pseudacris triseriata, accumulate glucose during freezing but exhibit no increase in phosphorylase activity following 24-h freezing bouts. In the present study, chorus frogs were frozen for 5- and 30-min and 2- and 24-h durations. After freezing, glucose, glycogen, and glycogen phosphorylase and synthetase activities were measured in leg muscle and liver to determine if enzyme activities varied over shorter freezing durations, along with glucose accumulation. Liver and muscle glucose levels rose significantly (5-12-fold) during freezing. Glycogen showed no significant temporal variation in liver, but in muscle, glycogen was significantly elevated after 24 h of freezing relative to 5 and 30 min-frozen treatments. Hepatic phosphorylase a and total phosphorylase activities, as well as the percent of the enzyme in the active form, showed no significant temporal variation following freezing. Muscle phosphorylase a activity and percent active form increased significantly after 24 h of freezing, suggesting some enhancement of enzyme function following freezing in muscle. However, the significance of this enhanced activity is uncertain because of the concurrent increase in muscle glycogen with freezing. Neither glucose 6-phosphate independent (I) nor total glycogen synthetase activities were reduced in liver or muscle during freezing. Thus, chorus frogs displayed typical cryoprotectant accumulation compared with other freeze-tolerant anurans, but freezing did not significantly alter activities of hepatic enzymes associated with glycogen metabolism.  相似文献   

5.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

6.
1. The effect of glucose, caffeine, AMP and polyamines was investigated on the dephosphorylation of phosphorylase a by the catalytic subunits of protein phosphatase-1 and -2A. 2. Caffeine at 1-20 microM inhibited the dephosphorylation of the dimeric phosphorylase a at 37 degrees C using skeletal muscle enzymes; 0.1-10 mM of caffeine enhanced the rate of dephosphorylation greatly at 13 degrees C and slightly at 37 degrees C. 3. alpha-D-Glucose was more effective in accelerating both the dephosphorylation and the tryptic digestion of phosphorylase a than the beta-anomer. 4. Polyamines were found to moderate the inhibitory effect of AMP at concentrations which may occur in the tissues. In the presence of 5 mM glucose polyamines could cancel the AMP inhibition of the dephosphorylation of liver phosphorylase a by hepatic protein phosphatase-1 and -2A.  相似文献   

7.
Acrosin (acrosomal proteinase; EC 3.4.21.10) is a sperm-specific serine proteinase implicated in sperm penetration of the mammalian oocyte. Previously, we had shown that human acrosin, unlike human trypsin (EC 3.4.21.4), was inhibited by beta-D-fructose and related carbohydrates. The present study was undertaken to more fully elucidate the mechanism of action of fructose as an acrosin inhibitor, and to further differentiate the kinetic properties of acrosin from those of trypsin. Fructose produced a complex pattern of inhibition. At relatively low concentrations (10-60 mM), fructose acted as a competitive inhibitor with an apparent inhibition constant of 13 mM. In contrast, at high concentrations (80-320 mM), fructose behaved as a noncompetitive inhibitor, with an apparent inhibition constant of 205 mM. A Hill plot of enzyme activity as a function of fructose concentration suggested only a single binding site for fructose (slope = -0.90). The pattern of inhibition is not consistent with an enzyme containing only a single catalytic site, based either upon steady-state or rapid equilibrium assumptions; however, good agreement between observed and simulated data were obtained based upon the assumption of two catalytic sites with equal or similar binding and catalytic constants. The data suggested that fructose interacts with a single binding site (Ki = 8 mM) which alters both catalytic sites to produce an enzyme species having a higher apparent Michaelis constant and lower kcat as compared to the uninhibited enzyme. Fructose had no effect upon the rate of acrosin inactivation by either diisopropylfluorophosphate or tosyl-lysine-chloromethylketone, suggesting that neither substrate binding nor acylation were altered by this agent. The above data indicate substantial differences between the catalytic properties of human acrosin and those of trypsin.  相似文献   

8.
A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing polyacrylamide anionic disc gel which was associated with the enzyme activity. The enzyme was made up of equimolar concentrations of two subunits whose molecular weights were 58,000 (range 58,000-62,000) and 35,000 (range 35,000-38,000). Two other polypeptides (Mr 76,000 and 27,000) were also closely associated with our enzyme preparation, but their roles, if any, in phosphatase activity are not known. The optimum pH for the reaction was 7.5-8.0. Km value of phosphoprotein phosphatase for phosphorylase a was 0.10-0.12 mg/ml. Freezing and thawing of the enzyme in the presence of 0.2 M beta-mercaptoethanol caused an activation (100-140%) of phosphatase activity with a concomitant partial dissociation of the enzyme into a Mr 35,000 catalytic subunit. Divalent cations (Mg2+, Mn2+, and Co2+) and EDTA were inhibitory at concentrations higher than 1 mM. Spermine and spermidine were also found to be inhibitory at 1 mM concentrations. The enzyme was inhibited by nucleotides (ATP, ADP, AMP), PPi, Pi, and NaF; the degree of inhibition was different with each compound and was dependent on their concentrations employed in the assay. Among various types of histones examined, maximum activation of phosphoprotein phosphatase activity was observed with type III and type V histone (Sigma). Further studies with type III histone indicated that it increased both the Km for phosphorylase a and the Vmax of the dephosphorylation reaction. Purified liver phosphatase, in addition to the dephosphorylation of phosphorylase a, also catalyzed the dephosphorylation of 32P-labeled phosphorylase kinase, myosin light chain, myosin, histone III-S, and myelin basic protein. The effects of Mn2+, KCl, and histone III-S on phosphatase activity were variable depending on the substrate used.  相似文献   

9.
The activity of two purified homogeneous phosphoprotein phosphatases types P I and P II) (phosphoprotein phosphohydrolase, EC 3.1.3.16) from rabbit liver (Khandelwal, R.L., Vandenheede, J.R., and Krebs, E.G. (1976) J. Biol. Chem. 251, 4850-4858) were examined in the presence of divalent cations, Pi, PPi, nucleotides, glycolytic intermediates and a number of other compounds using phosphorylase a, glycogen synthase D and phosphorylated histone as substrates. Enzyme activities were usually inhibited by divalent cations with all substrates; the inhibition being more pronounced with phosphorylase a. Zn2+ was the most potent inhibitor among the divalent cations tested. The enzyme was competitively inhibited by PPi (Ki = 0.1 mM for P I and 0.3 mM for PII), Pi (Ki = 15 mM for P I and 19.8 mM for P II) and p-nitrophenyl phosphate (Ki = 1 mM and 1.4 mM for P I and P II, respectively) employing phosphorylase a as the substrate. The compounds along with a number of others (Na2SO4, citrate, NaF and EDTA) also inhibited the enzyme activity with the other two substrates. Severe inhibition of the enzyme was also observed in the presence of the adenine and uridine nucleotides; monophosphate nucleotides being more inhibitory with phosphorylase a, whereas the di- and triphosphate nucleotides showed more inhibition with glycogen synthase D and phosphorylated histone. Cyclic AMP had no significant effect on enzyme activity with all the substrates tested. Phosphorylated metabolites did not show any marked effect on the enzyme activity with phosphorylase a as the substrate.  相似文献   

10.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

11.
Kinetic analysis showed that the alkaloid caffeine is a competitive inhibitor of the enzyme lactate dehydrogenase with respect to substrate pyruvate, and a non-competitive inhibitor with respect to the coenzyme NADH. The inhibitor constant Ki is 0,54 mM. Scatchard analysis determined the dissociation constant for a single independent binding site of the ternary lactate dehydrogenase - NADH - caffeine complex (KE-NADH-CAFFEINE) and the number of binding sites to be 0,14 mM and 3,83 respectively. Caffeine binds to a hydrophobic domain in the substrate binding site. Alternate nucleophilic - electrophilic functionalities within the inhibitor molecule are proposed to be the fundamental reason for the inhibition.  相似文献   

12.
Glycogen synthesis by rat hepatocytes.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Katz  S Golden    P A Wals 《The Biochemical journal》1979,180(2):389-402
1. Hepatocytes from starved rats or fed rats whose glycogen content was previously depleted by phlorrhizin or by glucagon injections, form glycogen at rapid rates when incubated with 10mM-glucose, gluconeogenic precursors (lactate, glycerol, fructose etc.) and glutamine. There is a net synthesis of glucose and glycogen. 14C from all three types of substrate is incorporated into glycogen, but the incorporation from glucose represents exchange of carbon atoms, rather than net incorporation. 14C incorporation does not serve to measure net glycogen synthesis from any one substrate. 2. With glucose as sole substrate net glucose uptake and glycogen deposition commences at concentrations of about 12--15mM. Glycogen synthesis increases with glucose concentrations attaining maximal values at 50--60mM, when it is similar to that obtained in the presence of 10mM glucose and lactate plus glutamine. 3. The activities of the active (a) and total (a+b) forms of glycogen synthase and phosphorylase were monitored concomitant with glycogen synthesis. Total synthase was not constant during a 1 h incubation period. Total and active synthase activity increased in parallel with glycogen synthesis. 4. Glycogen phosphorylase was assayed in two directions, by conversion of glycose 1-phosphate into glycogen and by the phosphorylation of glycogen. Total phosphorylase was assyed in the presence of AMP or after conversion into the phosphorylated form by phosphorylase kinase. Results obtained by the various methods were compared. Although the rates measured by the procedures differ, the pattern of change during incubation was much the same. Total phosphorylase was not constant. 5. The amounts of active and total phosphorylase were highest in the washed cell pellet. Incubation in an oxygenated medium, with or without substrates, caused a prompt and pronounced decline in the assayed amounts of active and total enzyme. There was no correlation between phosphorylase activity and glycogen synthesis from gluconeogenic substrates. With fructose, active and total phosphorylase activities increased during glycogen syntheses. 6. In glycogen synthesis from glucose as sole substrate there was a decline in phosphorylase activities with increased glucose concentration and increased rates of glycogen deposition. The decrease was marked in cells from fed rats. 7. To determine whether phosphorolysis and glycogen synthesis occur concurrently, glycogen was prelabelled with [2-3H,1-14C]-galactose. During subsequent glycogen deposition there was no loss of activity from glycogen in spite of high amounts of assayable active phosphorylase.  相似文献   

13.
Hepatocytes were prepared from a strain of rats deficient in hepatic phosphorylase b kinase and were used to assess the role of this enzyme in the adrenergic regulation of pyruvate kinase and gluconeogenesis. Epinephrine (10 μM) stimulated glucose output and gluconeogenesis from 1.8 mM lactate but did not significantly affect the concentration of hepatocyte glycogen. In addition epinephrine treatment led to an inhibition of pyruvate kinase. The stimulation of gluconeogenesis and the inhibition of pyruvate kinase by epinephrine were blocked by both α- and β-antagonists: similar effects with epinephrine were observed in cells from control animals. It is concluded that mechanisms for the adrenergic regulation of pyruvate kinase and gluconeogenesis are similar in hepatocytes from both phosphorylase kinase-deficient and normal rats.  相似文献   

14.
The phosphorylated form of liver glycogen phosphorylase (alpha-1,4-glucan : orthophosphate alpha-glucosyl-transferase, EC 2.4.1.1) (phosphorylase a) is active and easily measured while the dephosphorylated form (phosphorylase b), in contrast to the muscle enzyme, has been reported to be essentially inactive even in the presence of AMP. We have purified both forms of phosphorylase from rat liver and studied the characteristics of each. Phosphorylase b activity can be measured with our assay conditions. The phosphorylase b we obtained was stimulated by high concentrations of sulfate, and was a substrate for muscle phosphorylase kinase whereas phosphorylase a was inhibited by sulfate, and was a substrate for liver phosphorylase phosphatase. Substrate binding to phosphorylase b was poor (KM glycogen = 2.5 mM, glucose-1-P = 250 mM) compared to phosphorylase a (KM glycogen = 1.8 mM, KM glucose-1-P = 0.7 mM). Liver phosphorylase b was active in the absence of AMP. However, AMP lowered the KM for glucose-1-P to 80 mM for purified phosphorylase b and to 60 mM for the enzyme in crude extract (Ka = 0.5 mM). Using appropriate substrate, buffer and AMP concentrations, assay conditions have been developed which allow determination of phosphorylase a and 90% of the phosphorylase b activity in liver extracts. Interconversion of the two forms can be demonstrated in vivo (under acute stimulation) and in vitro with little change in total activity. A decrease in total phosphorylase activity has been observed after prolonged starvation and in diabetes.  相似文献   

15.
1. Activation of glucose 6-phosphate is one of the unique properties of pyruvate kinase from Mycobacterium smegmatis. 2. Pyruvate kinase, partially purified from ultrasonic extracts of the mycobacteria by (NH4)2SO4 fractionation, exhibited sigmoidal kinetics at various concentrations of phosphoenolpyruvate, with a high degree of co-operativity (Hill coefficient, h = 3.7) and S0.5 value of 1.0 mM. 3. In the presence of glucose 6-phosphate, the degree of co-operativity shown by the phosphoenolpyruvate saturation curve was decreased to h = 2.33 and the S0.5 value was lowered to 0.47 mM. 4. The enzyme was activated by AMP and ribose 5-phosphate also, but the activation constant was lowest with glucose 6-phosphate (0.24 mM). 5. The enzyme was strongly inhibited by ATP at all phosphoenolpyruvate concentrations. The concentrations of ATP required to produce half-maximal inhibition of enzyme activity at non-saturating (0.2 mM) and saturating (2 mM) phosphoenolpyruvate concentrations were 1.1 mM and 3 mM respectively. 6. The inhibition of ATP was partially relieved by glucose 6-phosphate. 7. The enzyme exhibited Michaelis-Menten kinetics with ADP as the variable substrate, with an apparent Km of 0.66 mM. 8. The enzyme required Mg2+ or Mn2+ ions for activity. It was not activated by univalent cations. 9. The kinetic data indicate that under physiological conditions glucose 6-phosphate probably plays a significant role in the regulation of pyruvate kinase activity.  相似文献   

16.
All eukaryotic vacuolar (V-type) ATPases share the property of being inhibited by low concentrations (1-2 [mu]M) if N-ethylmaleimide (NEM). This distinguishes them from P-type ATPases, which are inhibited by higher concentrations of NEM (0.1-1 mM), and F-type ATPases, which are virtually resistant to inhibition by NEM. Using tonoplast vesicles from Beta vulgaris we have determined the kinetics of NEM inactivation of the V-type ATPase to be pseudo-first order. The concentration dependence of the reaction indicates interaction with a single class of inhibitory site with a rate constant of 4.1 x 104 M-1 min-1. Nucleotides protect against inactivation with an efficacy that agrees with their capacity to act as enzyme substrates. The dissociation constant for MgATP has been determined from protection experiments to be 0.44 mM, which is close to the observed Km for hydrolysis (0.39 mM). Likewise, the dissociation constant for protection by MgADP (127 [mu]M) is close to its inhibition constant as a competitive inhibitor (110 [mu]M). Taken together, these findings suggest that NEM inactivation is associated with nucleotide protectable exposure of a single cysteine residue on the catalytic subunit and confirm the utility of this residue for the determination of ligand dissociation constants through protection of maleimide inhibition.  相似文献   

17.
Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.  相似文献   

18.
Uridine phosphorylase is the only pyrimidine nucleoside cleaving activity that can be detected in extracts of Schistosoma mansoni. The enzyme is distinct from the two purine nucleoside phosphorylases contained in this parasite. Although Urd is the preferred substrate, uridine phosphorylase can also catalyze the reversible phosphorolysis of dUrd and dThd, but not Cyd, dCyd, or orotidine. The enzyme was purified 170-fold to a specific activity of 2.76 nmol/min/mg of protein with a 16% yield. It has a Mr of 56,000 as determined by molecular sieving on Sephadex G-100. The mechanism of uridine phosphorylase is sequential. When Urd was the substrate, the KUrd = 13 microM and the KPi = 533 +/- 78 microM. When dThd was used as a substrate, the KdThd = 54 microM and the KPi = 762 +/- 297 microM. The Vmax with dThd was 53 +/- 9.8% that of Urd. dThd was a competitive inhibitor when Urd was used as a substrate. The enzyme showed substrate inhibition by Urd, dThd (greater than 0.125 mM) and phosphate (greater than 10 mM). 5-(Benzyloxybenzyloxybenzyl)acyclouridine was identified as a potent and specific inhibitor of parasite (Ki = 0.98 microM) but not host uridine phosphorylase. Structure-activity relationship studies suggest that uridine phosphorylase from S. mansoni has a hydrophobic pocket adjacent to the 5-position of the pyrimidine ring and indicate differences between the binding sites of the mammalian and parasite enzymes. These differences may be useful in designing specific inhibitors for schistosomal uridine phosphorylase which will interfere selectively with nucleic acids synthesis in this parasite.  相似文献   

19.
We have reported that glycogen synthesis and degradation can occur in vivo without a significant change in the amount of phosphorylase a present. These data suggest the presence of a regulatable mechanism for inhibiting phosphorylase a activity in vivo. Several effectors have been described. AMP stimulates, whereas ADP, ATP, and glucose inhibit activity. Of these effectors, only the glucose concentration changes under normal conditions; thus it could regulate phosphorylase a activity in vivo. We previously have reported that, when all of these effectors were present at physiological concentrations, the net effect was no change in phosphorylase a activity. Addition of caffeine, an independent inhibitor of activity, to the above effectors not only resulted in inhibition but also restored a glucose concentration-dependent inhibition. Because uric acid is an endogenous xanthine derivative, we decided to determine whether it had an effect on phosphorylase a activity. Independently, uric acid did not affect activity; however, when added at a presumed physiological concentration in combination with AMP, ADP, ATP, and glucose, it inhibited activity. A modest but not statistically significant glucose concentration-dependent inhibition was also present. Thus uric acid may play an important role in regulating phosphorylase a activity in vivo.  相似文献   

20.
This study aimed to determine physiologically relevant kinetic and allosteric effects of P(i), AMP, ADP, and caffeine on isolated skeletal muscle glycogen phosphorylase a (Phos a). In the absence of effectors, Phos a had Vmax = 221 +/- 2 U/mg and Km = 5.6 +/- 0.3 mM P(i) at 30 degrees C. AMP and ADP each increased Phos a Vmax and decreased Km in a dose-dependent manner. AMP was more effective than ADP (e.g., 1 microM AMP vs. ADP: Vmax = 354 +/- 2 vs. 209 +/- 8 U/mg, and Km = 2.3 +/- 0.1 vs. 4.1 +/- 0.3 mM). Both nucleotides were relatively more effective at lower P(i) levels. Experiments simulating a range of contraction (exercise) conditions in which P(i), AMP, and ADP were used at appropriate physiological concentrations demonstrated that each agent singly and in combination influences Phos a activity. Caffeine (50-100 microM) inhibited Phos a (Km approximately 8-14 mM, approximately 40-50% reduction in activity at 2-10 mM P(i)). The present in vitro data support a possible contribution of substrate (P(i)) and allosteric effects to Phos a regulation in many physiological states, independent of covalent modulation of the percentage of total Phos in the Phos a form and suggest that caffeine inhibition of Phos a activity may contribute to the glycogen-sparing effect of caffeine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号