首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The aryl hydrocarbon receptor (AhR) mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. In a process termed transformation, ligand binding converts the AhR into its high affinity DNA binding form that represents a dimer of the AhR and Arnt, a closely related nuclear protein. During transformation, protein chaperone Hsp90 is thought to be replaced by Arnt in overlapping binding sites in the basic helix loop helix and PASB domains of the AhR. Here, analysis of AhR variants containing a modified PASB domain and AhR PASA-PASB fragments of various lengths revealed (i) an inhibitory effect on transformation concomitant with Hsp90 binding in the PASB domain, (ii) an ability of the PASA-PASB fragment of the AhR to reproduce key steps in the transformation process, and (iii) a ligand-dependent conformational change in the PASA domain consistent with increased PASA exposure during AhR transformation. Based on these results, we propose a new mechanism of AhR transformation through initiation of Arnt dimerization and Hsp90 displacement in AhR PASA/B domains. This study provides insights into mechanisms of AhR transformation, dimerization of PAS domain proteins, and Hsp90 dissociation in activation of its client proteins.  相似文献   

5.
Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics.  相似文献   

6.
PAS (PER-ARNT-SIM) domains are a family of sensor protein domains involved in signal transduction in a wide range of organisms. Recent structural studies have revealed that these domains contain a structurally conserved alpha/beta-fold, whereas almost no conservation is observed at the amino acid sequence level. The photoactive yellow protein, a bacterial light sensor, has been proposed as the PAS structural prototype yet contains an N-terminal helix-turn-helix motif not found in other PAS domains. Here we describe the atomic resolution structure of a photoactive yellow protein deletion mutant lacking this motif, revealing that the PAS domain is indeed able to fold independently and is not affected by the removal of these residues. Computer simulations of currently known PAS domain structures reveal that these domains are not only structurally conserved but are also similar in their conformational flexibilities. The observed motions point to a possible common mechanism for communicating ligand binding/activation to downstream transducer proteins.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The aryl hydrocarbon receptor (AhR) exists in the absence of a ligand as a tetrameric complex composed of a 95-105 kDa ligand binding subunit, a dimer of hsp90, and the immunophilin-like X-associated protein 2 (XAP2). XAP2 has a highly conserved carboxy terminal tetratricopeptide repeat domain that is required for both hsp90 and AhR binding. Hsp 90 appears to be involved in the initial folding of newly synthesized AhR, stabilization of ligand binding conformation of the receptor, and inhibition of constitutive dimerization with ARNT. XAP2 is capable of stabilizing the AhR, as well as enhancing cytoplasmic localization of the receptor. XAP2 binds to both the AhR and hsp90 in the receptor complex, and is capable of independently binding to both hsp90 and the AhR. However, the exact functional role for XAP2 in the AhR complex remains to be fully established.  相似文献   

14.
Ligand binding and activation of the Ah receptor   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
B K Meyer  G H Perdew 《Biochemistry》1999,38(28):8907-8917
The unliganded aryl hydrocarbon receptor (AhR) exists in the cytoplasm in a tetrameric 9S core complex, consisting of the AhR ligand-binding subunit, a dimer of hsp90, and the hepatitis B virus X-associated protein 2 (XAP2), an immunophilin-related protein sharing homologous regions with FKBP12 and FKBP52. Interactions between the recently identified XAP2 subunit and other members of the unliganded AhR complex and its precise role in the AhR signal transduction pathway are presently unknown. Mapping studies indicate that XAP2 requires the PAS, hsp90, and ligand binding domain(s) of the AhR for binding, and that both proteins directly interact in the absence of hsp90. XAP2 is also able to interact with hsp90 complexes in the absence of the AhR, and C-terminal sequences of XAP2 are required for this interaction. XAP2 binds to the C-terminal end of hsp90, which contains a tetratricopeptide repeat domain acceptor site, whereas the AhR binds to a domain in the middle of hsp90. XAP2 was not found to be associated with the AhR-Arnt heterocomplex either in vitro or in nuclear extracts isolated from Hepa 1 cells treated with TCDD. Transient expression of XAP2 in COS-1 cells resulted in enhanced cytosolic AhR levels, suggesting a role for XAP2 in regulating the rate of AhR turnover.  相似文献   

17.
18.
Hsp90 (heat shock protein of 90 kDa) is often found associated with functional domains of client proteins, including those for ligand binding, dimerization, DNA binding, and enzymatic activity. Although Hsp90 can maintain the conformation of functionally important domains prior to activation of the client protein, its specific binding site and the mechanism(s) of Hsp90 dissociation during activation are unknown. Here, we have identified and characterized residues involved in Hsp90 binding within the aryl hydrocarbon receptor (AhR) ligand-binding domain and demonstrate that they overlap with those involved in ligand binding. In agreement with this spatial model, ligand binding results in Hsp90 dissociation from the AhR Per-ARNT-Sim B fragment. Interestingly, whereas Hsp90-binding residues within the ligand-binding domain were not involved in Hsp90-dependent AhR protein stability, several of these residues are important for ligand-dependent AhR activation, and their mutation resulted in conversion of two AhR antagonists/partial agonists into full AhR agonists. These studies reveal co-localization of a tentative Hsp90-binding site with that for AhR ligand binding and provide the first molecular mechanism for Hsp90 dissociation in the activation of a client protein.  相似文献   

19.
20.
KCNH channels form an important family of voltage gated potassium channels. These channels include a N-terminal Per-Arnt-Sim (PAS) domain with unknown function. In other proteins PAS domains are implicated in cellular responses to environmental queues through small molecule binding or involvement in signaling cascades. To better understand their role we characterized the structural properties of several channel PAS domains. We determined high resolution structures of PAS domains from the mouse EAG (mEAG), drosophila ELK (dELK) and human ERG (hERG) channels and also of the hERG domain without the first nine amino acids. We analyzed these structures for features connected to ligand binding and signaling in other PAS domains. In particular, we have found cavities in the hERG and mEAG structures that share similarities with the ligand binding sites from other PAS domains. These cavities are lined by polar and apolar chemical groups and display potential flexibility in their volume. We have also found that the hydrophobic patch on the domain β-sheet is a conserved feature and appears to drive the formation of protein-protein contacts. In addition, the structures of the dELK domain and of the truncated hERG domain revealed the presence of N-terminal helices. These helices are equivalent to the helix described in the hERG NMR structures and are known to be important for channel function. Overall, these channel domains retain many of the PAS domain characteristics known to be important for cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号