首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Wu Z  Kong F 《Carbohydrate research》2004,339(17):2761-2768
Hexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp, based dimers were synthesized by twofold glycosidation of the hexaosyl trichloroacetimidate with hexylene 1,6-diol, diethylene glycol and triethylene glycol, respectively. Meanwhile, a triose, beta-1D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp, based trimer was obtained by glycosidation of the triosyl trichloroacetimidate with a glycerol-derived triol scaffold.  相似文献   

2.
Wu Z  Kong F 《Carbohydrate research》2004,339(2):377-384
Coupling of the trisaccharide acceptor 2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-5-O-acetyl-1,2-O-isopropylidene-alpha-D-glucofuranose (2) with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-alpha-D-annopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (1) gave an alpha-linked hexasaccharide 3, while coupling of 2 with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (7) produced alpha- 8 and beta-linked 12 hexasaccharides in a ratio of 3:2. Deprotection of 3, 8, and 12 afforded the analogues of the immunomodulator beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-D-Glcp (A).  相似文献   

3.
Zhang G  Fu M  Ning J 《Carbohydrate research》2005,340(4):597-602
Coupling of the trisaccharide acceptor either 2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-5-O-acetyl-1,2-O-isopropylidene-alpha-D-glucofuranose (13) or lauryl 2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,5-di-O-acetyl-alpha-D-glucopyranoside (15) with the trisaccharide donor 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-galactopyranosyl trichloroacetimidate (12) gave alpha-linked hexasaccharides 14 and 16, respectively, while coupling of either 13 or 15 with trisaccharide donor 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-galactopyranosyl trichloroacetimidate 17 did not afford any hexasaccarides. The analogues of the immunomodulator beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-beta-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp (1) was obtained by deprotection of 14 and 16.  相似文献   

4.
Wu Z  Ning J  Kong F 《Carbohydrate research》2003,338(21):2203-2212
Beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)](2-3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp were synthesized as their methoxyphenyl glycosides in a concise way with a trisaccharide as the building block.  相似文献   

5.
Wu Z  Kong F 《Carbohydrate research》2003,338(17):1727-1735
alpha-D-Manp-(1-->3)-[alpha-D-Manp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[alpha-D-Manp-(1-->6)]-D-Glcp and alpha-D-Manp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)[-alpha-D-Manp-(1-->6)]-D-Glcp were synthesized in a regio- and stereoselective way as the mannose-containing analogues of the immunomodulating beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-D-Glcp.  相似文献   

6.
Li A  Kong F 《Carbohydrate research》2005,340(12):1949-1962
Effective syntheses of galactose hepta-, octa-, nona-, and decasaccharides that exist in the rhizomes of Atractylodes lancea DC were achieved with 2,3,4,6-tetra-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (1), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-d-galactopyranoside (2), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (5), 4-methoxyphenyl 6-O-acetyl-2,4-di-O-benzoyl-beta-d-galactopyranoside (22), and 4-methoxyphenyl 2,4,6-tri-O-benzoyl-beta-d-galactopyranoside (26) as the key synthons. Coupling of 2 with 1, followed by oxidative cleavage of 1-OMP and subsequent trichloroacetimidate formation gave the beta-(1-->6)-linked disaccharide donor 4. Condensation of 2 with 5 and subsequent selective deacetylation by methanolysis produced the beta-(1-->6)-linked disaccharide acceptor 7. Reaction of 7 with 4, oxidative cleavage of 1-OMP, and trichloroacetimidate formation produced the tetrasaccharide donor 9. The penta- (15), the hexa- (17), and the heptasaccharide donor 19 were synthesized similarly. Meanwhile, treatment of 1 with 22 yielded beta-(1-->3)-linked disaccharide 23 and alpha-(1-->3)-linked disaccharide 25. Oxidative cleavage of 1-OMp of 23 followed by trichloroacetimidate formation produced the disaccharide donor 24. Coupling of 26 with 24, again, gave beta-linked 27 and alpha-linked 29. Selective 6-O-deacetylation of 27 afforded the trisaccharide acceptor 28. TMSOTf-promoted condensation 28 of with the tetra- (9), penta- (15), hexa-(17), and heptasaccharide donor 19, followed by deprotection, gave the target compounds.  相似文献   

7.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

8.
Standard chemical methods involving the use of O-acetylated glycosyl trichloroacetimidates as glycosylating agents were used to prepare the five 1,3-dideoxynojirimycin-3-yl beta-(1-->3)-linked oligo-glucosides (1-5) and also the beta-(1-->6)-bonded glucobiose (gentiobiose)-based analogue 6 as potential fungicides. In the course of the work, the beta-(1-->6), beta-(1-->6)-linked analogue 8 of 6 and 6-O- and 4-O-beta-glucopyranosyl-deoxynojirimycins 7 and 9, respectively, were also produced.  相似文献   

9.
Li A  Kong F 《Carbohydrate research》2004,339(11):1847-1856
Two arabinogalactosyl nonasaccharides, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp and beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp, were synthesized as their 4-methoxyphenyl glycosides with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (14), 4-methoxyphenyl 3-O-allyl-2,4-di-O-benzoyl-beta-D-galactopyranoside (2), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (8), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl-(1-->5)-2,3-di-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (11), as the key synthons. The tetra- (10) and pentasaccharide donor (13), and the tetra- (20) and pentasaccharide acceptor (22) were synthesized based on these synthons through simple transformations. Coupling of 22 with 10, and coupling of 20 with 13 and subsequent deacylation gave nonasaccharides 24 and 26, respectively, consisting of beta-(1-->6)-linked glactopyranosyl backbone and alpha-(1-->3)-linked arabinofuranosyl side chains of different size.  相似文献   

10.
Li A  Zeng Y  Kong F 《Carbohydrate research》2004,339(3):673-681
An octasaccharide, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->2)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->2)]-beta-D-Galp-(1-->6)-beta-D-Galp-1-->OMP was synthesized. 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (9), and 4-methoxyphenyl 2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (11), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (12), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (17) were used as the synthons. A concise route was used to gain the tetrasaccharide donor 19 by the use of 11, 12, 5, and 17. Meanwhile, treatment of 5 with 9 yielded beta-(1-->6)-linked disaccharide 20, and subsequent selective 6-O-deacetylation produced the disaccharide acceptor 21. Reaction of 21 with 19 gave 22, and subsequent selective 2-O-deacetylation afforded the hexasaccharide acceptor 23. Condensation of 23 with alpha-L-(1-->5)-linked arabinofuranose disaccharide 24, followed by deprotection, yielded the target octasaccharide.  相似文献   

11.
Mei X  Heng L  Fu M  Li Z  Ning J 《Carbohydrate research》2005,340(15):2345-2351
A concise and effective synthesis of lauryl heptasaccharide 17 was achieved from the key intermediates lauryl 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4-di-O-benzoyl-beta-D-glucopyranoside (10) and isopropyl 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-1-thio-beta-D-glucopyranoside (15). The key trisaccharide glycosyl acceptor 10 was constructed by coupling 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-alpha-D-glucopyranosyl trichloroacetimidate (3) with lauryl 6-O-acetyl-2,4-di-O-benzoyl-beta-D-glucopyranoside (9), followed by deacetylation. The thioglycoside donor 15 was obtained by condensation of 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11) with isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (12), followed by debenzylidenation and acetylation. A bioassay of the inhibition of S180 noumenal tumors showed that lauryl heptasaccharide 17 could be employed as a potential agent for cancer treatment.  相似文献   

12.
A glucan that was soluble in aqueous sodium chloride was isolated from the aqueous extract of the fruiting bodies of Pleurotus florida. On the basis of total hydrolysis, methylation analysis, periodate oxidation, Smith degradation, and NMR studies (1H, 13C, TOCSY, DQF-COSY, NOESY, and HSQC), the structure of the repeating unit of the polysaccharide is established as: This glucan stimulates the phagocytic activity of macrophages.  相似文献   

13.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

14.
A bacterial strain AM7, isolated from soil and identified as Bacillus circulans, produced two kinds of novel cyclic oligosaccharides. The cyclic oligosaccharides were produced from amylose using a culture supernatant of the strain as the enzyme preparation. The major product was a cyclomaltopentaose cyclized by an alpha-(1-->6)-linkage, cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}. The other minor product was cyclomaltohexaose cyclized by an alpha-(1-->6)-linkage, cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}. We propose the names isocyclomaltopentaose (ICG5) and isocyclomaltohexaose (ICG6) for these novel cyclic maltooligosaccharides having one alpha-(1-->6)-linkage. ICG5 was digested by alpha-amylase derived from Aspergillus oryzae, cyclomaltodextrin glucanotransferase (CGTase) from Bacillus stearothermophilus, and maltogenic alpha-amylase. On the other hand, ICG6 was digested by CGTase from B. stearothermophilus and B. circulans, and maltogenic alpha-amylase. This is the first report of enzymatically produced cyclomaltopentaose and cyclomaltohexaose, which have an alpha-(1-->6)-linkage in their molecules.  相似文献   

15.
Zeng Y  Kong F 《Carbohydrate research》2003,338(20):2047-2056
Two heptasaccharides alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-1-OMP and beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp1-OMP, and two octasaccharides alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-1-OMP and beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp1-OMP were synthesized in a stereospecific way by remote control.  相似文献   

16.
Mammalian Toll-like receptors (TLRs) play important roles in host immune defense. The activation of TLR and down-stream signaling pathways have great impact on human physiology. Chemically diverse microbial products as well as synthetic ligands serve as agonists for these receptors. Recently, synthetic TLR ligands are being exploited as useful therapeutic agents for a variety of diseases including infections, inflammatory diseases, and cancers. Alginate polymers and oligosaccharides are strong immune stimulants mediated by TLR2/4, but synthesis of alginate oligomers is rarely studied. Reported here are the design and chemical synthesis of two beta-(1-->4)-di- and beta-(1-->4)-tri-d-mannuronic acid neoglycolipids 1 and 2 as potential TLR ligands. By using 4,6-di-O-benzylidene-protected 1-thio mannoside 7 as a glycosyl donor, the diastereoselective beta-d-mannosylation protocol provides the beta-(1-->4)-d-mannobiose and beta-(1-->4)-d-mannotriose derivatives, which upon regioselective oxidation with TEMPO/BAIB oxidation system yield the corresponding beta-(1-->4)-d-mannuronic acid containing neoglycolipids 1 and 2.  相似文献   

17.
Four fractions of a water-insoluble alpha-(1-->3)-D-glucan GL extracted from fruiting bodies of Ganoderma lucidum were dissolved in 0.25 M LiCl/DMSO, and then reacted with sulfur trioxide-pyridine complex at 80 degrees C to synthesize a series of water-soluble sulfated derivatives S-GL. The degree of substitution of DS was measured by using IR infrared spectra, elemental analysis, and 13C NMR to be 1.2-1.6 in the non-selective sulfation. Weight-average molecular weight Mw and intrinsic viscosity [eta] of the sulfated derivatives S-GL were measured by multi-angle laser light scattering and viscometry. The Mw value (2.4 x 10(4)) of sulfated glucan S-GL-1 was much lower than that (44.5 x 10(4)) of original alpha-(1-->3)-D-glucan GL-1. The Mark-Houwink equation and average value of characteristic ratio C(infinity) for the S-GL in 0.2 M NaCl aqueous solution at 25 degrees C were found to be: [eta] = 1.32 x 10(-3) Mw(1.06) (cm3 g(-1)) and 16, respectively, in the Mw range from 1.1 x 10(4) to 2.4 x 10(4). It indicated that the sulfated derivatives of the alpha-(1-->3)-D-glucan in the aqueous solution behave as an expanded chain, owing to intramolecular hydrogen bonding or interaction between charge groups. Interestingly, two sulfated derivatives synthesized from the alpha-(1-->3)-D-glucan and curdlan, a beta-(1-->3)-D-glucan, all had significant higher antitumor activity against Ehrlich ascites carcinoma (EAC) than the originals. The effect of expanded chains of the sulfated glucan in the aqueous solution on the improvement of the antitumor activity could not be negligible.  相似文献   

18.
A mimic of a (1-->2),(1-->6)-mannotrioside was synthesized by replacing the central mannose unit with an enantiomerically pure, conformationally stable trans-diaxial cyclohexanediol. The three-dimensional structure of the molecule was investigated by NMR spectroscopy supported by molecular modelling and was compared to the known features of the natural mannotrioside.  相似文献   

19.
The synthesis of thioglycosyl donors with a disaccharide beta-D-Gal-(1-->3)-D-GalNAc backbone was studied using the glycosylation of a series of suitably protected 3-monohydroxy- and 3,4-dihydroxyderivatives of phenyl 2-azido-2-deoxy-1-thio-alpha- and 1-thio-beta-D-galactopyranosides by galactosyl bromide, fluoride, and trichloroacetimidate. In the reaction with the monohydroxylated glycosyl acceptor, the process of intermolecular transfer of thiophenyl group from the glycosyl acceptor onto the cation formed from the molecule of glycosyl donor dominated. When glycosylating 3,4-diol under the same conditions, the product of the thiophenyl group transfer dominated or the undesired (1-->4), rather than (1-->3)-linked, disaccharide product formed. The aglycone transfer was excluded when 4-nitrophenylthio group was substituted for phenylthio group in the galactosyl acceptor molecule. This led to the target disaccharide, 4-nitrophenyl 2-azido-4,5-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-beta-D-galactopyranoside, in 57% yield. This disaccharide product bears nonparticipating azide group in position 2 of galactosamine and can hence be used to form alpha-glycoside bond. 2-Azide group and the aglycone nitro group were simultaneously reduced in this product and then trichloroacetylated, which led to the beta-glycosyl donor, 4-trichloroacetamidophenyl 4,6-O-diacetyl-2-deoxy-3-O-(2,3,4,6-tetra- O-acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside, in 62% yield. The resulting glycosyl donor was used in the synthesis of tetrasaccharide asialo-GM1.  相似文献   

20.
Alpha-glucan L-FV-II and beta-glucan L-FV-I were shown to co-exist in the extract of fruiting bodies of Lentinus edodes with aq. 5% NaOH/0.05% NaBH4 in previous work. Water-insoluble alpha-(1-->3)-D-glucan (L-FV-II) was treated with sulfur trioxide-pyridine complex at 25 degrees C to synthesize the water-soluble sulfated derivative SL-FV-II with a degree of substitution (DS) 1.1 in non-selective sulfation. The weight-average molecular weight (Mw) of sulfated glucan SL-FV-II is 57% of that of the original alpha-glucan L-FV-II. The alpha-glucan administered by gavaging at a dose of 50 mg/kg of body weight to BALB/C mice having implanted solid Sarcoma 180 was effective at an inhibition rate of 42%. In vitro experiments using human and murine tumor cell lines showed that SL-FV-II had antiproliferation activity at the concentration of 20 microg/mL towards four tumor cell lines. The sulfated alpha-(1-->3)-D-glucan had potent antiproliferation action (52%) on human MCF-7 breast carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号