首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The E7 proteins of human papillomaviruses (HPVs) promote S-phase reentry in differentiated keratinocytes of the squamous epithelia to support viral DNA amplification. In this study, we showed that nuclear p130 was present in the differentiated strata of several native squamous epithelia susceptible to HPV infection. In contrast, p130 was below the level of detection in HPV-infected patient specimens. In submerged and organotypic cultures of primary human keratinocytes, the E7 proteins of the high-risk mucosotrophic HPV-18, the benign cutaneous HPV-1, and, to a lesser extent, the low-risk mucosotropic HPV-11 destabilized p130. This E7 activity depends on an intact pocket protein binding domain and a casein kinase II (CKII) phosphorylation motif. Coimmunoprecipitation experiments showed that both E7 domains were important for binding to p130 in extracts of organotypic cultures. Metabolic labeling in vivo demonstrated that E7 proteins were indeed phosphorylated in a CKII motif-dependent manner. Moreover, the efficiencies of the E7 proteins of various HPV types or mutations to induce S-phase reentry in spinous cells correlated with their relative abilities to bind and to destabilize p130. Collectively, these data support the notion that p130 controls the homeostasis of the differentiated keratinocytes and is therefore targeted by E7 for degradation to establish conditions permissive for viral DNA amplification.  相似文献   

3.
The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity.  相似文献   

4.
5.
The adenovirus E1A protein interferes with regulators of apoptosis and growth by physically interacting with cell cycle regulatory proteins including the retinoblastoma tumor suppressor protein and the coactivator proteins p300/CBP (where CBP is the CREB-binding protein). The p300/CBP proteins occupy a pivotal role in regulating mitogenic signaling and apoptosis. The mechanisms by which cell cycle control genes are directly regulated by p300 remain to be determined. The cyclin D1 gene, which is overexpressed in many different tumor types, encodes a regulatory subunit of a holoenzyme that phosphorylates and inactivates PRB. In the present study E1A12S inhibited the cyclin D1 promoter via the amino-terminal p300/CBP binding domain in human choriocarcinoma JEG-3 cells. p300 induced cyclin D1 protein abundance, and p300, but not CBP, induced the cyclin D1 promoter. cyclin D1 or p300 overexpression inhibited apoptosis in JEG-3 cells. The CH3 region of p300, which was required for induction of cyclin D1, was also required for the inhibition of apoptosis. p300 activated the cyclin D1 promoter through an activator protein-1 (AP-1) site at -954 and was identified within a DNA-bound complex with c-Jun at the AP-1 site. Apoptosis rates of embryonic fibroblasts derived from mice homozygously deleted of the cyclin D1 gene (cyclin D1(-/-)) were increased compared with wild type control on several distinct matrices. p300 inhibited apoptosis in cyclin D1(+/+) fibroblasts but increased apoptosis in cyclin D1(-/-) cells. The anti-apoptotic function of cyclin D1, demonstrated by sub-G(1) analysis and annexin V staining, may contribute to its cellular transforming and cooperative oncogenic properties.  相似文献   

6.
The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growth is uncertain. However, E7 binding to pRB inhibits binding of cellular proteins to pRB and appears to block the growth-suppressive activity of pRB. We have found that E7 also inhibits binding of pRB to DNA. A 60-kDa version of pRB (pRB60) produced in reticulocyte translation reactions or in bacteria bound quantitatively to DNA-cellulose. Recombinant E7 protein used at a 1:1 or 10:1 molar ratio with pRB60 blocked 50 or greater than 95% of pRB60 DNA-binding activity, respectively. A mutant E7 protein (E7-Ala-24) with reduced pRB60-binding activity exhibited a parallel reduction in its blocking of pRB60 binding to DNA. An E7(20-29) peptide that blocks binding of E7 protein to pRB60 restored the DNA-binding activity of pRB60 in the presence of E7. Peptide E7(2-32) did not block pRB60 binding to DNA, while peptide E7(20-57) and an E7 fragment containing residues 1 to 60 partially blocked DNA binding. E7 species containing residues 3 to 75 were fully effective at blocking pRB60 binding to DNA. These studies indicate that E7 protein specifically blocks pRB60 binding to DNA and suggest that the E7 region responsible for this property lies between residues 32 and 75. The functional significance of these observations is unclear. However, we have found that a point mutation in pRB60 that impairs DNA-binding activity also blocks the ability of pRB60 to inhibit cell growth. This correlation suggests that the DNA-binding activity of retinoblastoma proteins contributes to their biological properties.  相似文献   

7.
Early gene E5 of bovine papillomavirus type 1 encodes a 44-amino-acid protein whose expression can transform immortalized mouse cell lines. We have previously reported that a chemically synthesized E5 peptide functions to induce cellular DNA synthesis upon microinjection into growth-arrested mouse cells. We further defined the two E5 domains essential for the full DNA synthesis induction activity by the analysis of E5 deletion and amino acid substitution mutant peptides. The first domain is the C-terminal 13-amino-acid core which is sufficient to activate DNA synthesis at high peptide concentration and contains two essential, highly conserved cysteine residues. The second domain is the 7-amino-acid hydrophobic sequence contiguous to the core domain which is sufficient to confer a 1,000-fold higher molar specific activity to the E5 peptide. A random hydrophobic sequence, but not charged amino acids, fulfills the function of the second domain.  相似文献   

8.
9.
Expression of the high-risk human papillomavirus (HPV) E6 and E7 oncogenes is essential for the initiation and maintenance of cervical cancer. The repression of both was previously shown to result in activation of their respective tumor suppressor targets, p53 and pRb, and subsequent senescence induction in cervical cancer cells. Consequently, viral oncogene suppression is a promising approach for the treatment of HPV-positive tumors. One well-established method of E6/E7 repression involves the reexpression of the viral E2 protein which is usually deleted in HPV-positive cancer cells. Here, we show that, surprisingly, bovine papillomavirus type 1 (BPV1) E2 but not RNA interference-mediated E6/E7 repression in HPV-positive cervical cancer cells stimulates cellular motility and invasion. Migration correlated with the dynamic formation of cellular protrusions and was dependent upon cell-to-cell contact. While E2-expressing migratory cells were senescent, migration was not a general feature of cellular senescence or cell cycle arrest and was specifically observed in HPV-positive cervical cancer cells. Interestingly, E2-expressing cells not only were themselves motile but also conferred increased motility to admixed HeLa cervical cancer cells. Together, our data suggest that repression of the viral oncogenes by E2 stimulates the motility of E6/E7-targeted cells as well as adjacent nontargeted cancer cells, thus raising the possibility that E2 expression may unfavorably increase the local invasiveness of HPV-positive tumors.  相似文献   

10.
11.
Using immunodepletion of cyclin E and the inhibitor protein p21WAF/CIP1, we demonstrate that the cyclin E protein, in association with Cdk2, is required for the elongation phase of replication on single-stranded substrates. Although cyclin E/Cdk2 is likely to be the major target by which p21 inhibits the initiation of sperm DNA replication, p21 can inhibit single-stranded replication through a mechanism dependent on PCNA. While the cyclin E/Cdk2 complex appears to have a role in the initiation of DNA replication, another Cdk kinase, possibly cyclin A/Cdk, may be involved in a later step controlling the switch from initiation to elongation. The provision of a large maternal pool of cyclin E protein shows that regulators of replication are constitutively present, which explains the lack of a protein synthesis requirement for replication in the early embryonic cell cycle.  相似文献   

12.
Due to the limited coding capacity of their small genomes, human papillomaviruses (HPV) rely extensively on host factors for the completion of their life cycles. Accordingly, most HPV proteins, including the replicative helicase E1, engage in multiple protein interactions. The fact that conserved regions of E1 have not yet been ascribed a function prompted us to use tandem affinity protein purification (TAP) coupled to mass spectrometry to identify novel targets of this helicase. This method led to the discovery of a novel interaction between the N-terminal 40 amino acids of HPV type 11 (HPV11) E1 and the cellular WD repeat protein p80 (WDR48). We found that interaction with p80 is conserved among E1 proteins from anogenital HPV but not among cutaneous or animal types. Colocalization studies showed that E1 can redistribute p80 from the cytoplasm to the nucleus in a manner that is dependent on the E1 nuclear localization signal. Three amino acid substitutions in E1 proteins from HPV11 and -31 were identified that abrogate binding to p80 and its relocalization to the nucleus. In HPV31 E1, these substitutions reduced but did not completely abolish transient viral DNA replication. HPV31 genomes encoding two of the mutant E1 proteins were not maintained as episomes in immortalized primary keratinocytes, whereas one encoding the third mutant protein was maintained at a very low copy number. These findings suggest that the interaction of E1 with p80 is required for efficient maintenance of the viral episome in undifferentiated keratinocytes.  相似文献   

13.
14.
Posttranslational modification-oligomerization, phosphorylation, and proteolytic cleavage-of the human papillomavirus (HPV) E4 protein occurs as the infected keratinocytes migrate up through the suprabasal wart layers. It has been postulated that these events modify E4 function during the virus life cycle. In HPV type 1 (HPV1)-induced warts, N-terminal sequences are progressively cleaved from the full-length E4 protein (E1(wedge)E4) of 17 kDa to produce a series of polypeptides of 16, 11 and 10 kDa. Here, we have shown that in human keratinocytes, a truncated protein (E4-16K), equivalent to the 16-kDa species, mediated a G(2) arrest in the cell cycle that was dependent on a threonine amino acid in a proline-rich domain of the protein. Reconstitution of cyclin B1 expression in E4-16K cells reversed the G(2) arrest. Expression of E4-16K also induced chromosomal rereplication, and this was associated with aberrant nuclear morphology. Perturbation of the mitotic cell cycle was a biological activity specific to the truncated protein. However, coexpression of the full-length E1(wedge)E4 protein and the truncated E4-16K protein inhibited normal cellular proliferation and cellular DNA rereplication but did not prevent cells from arresting in G(2). Our findings provide the first evidence to support the hypothesis that proteolytic cleavage of the E1(wedge)E4 protein modifies its function. Also, different forms of the HPV1 E4 protein cooperate to negatively influence keratinocyte proliferation. We predict that these distinct biological activities of E4 act to support efficient amplification of the viral genome in suprabasal keratinocytes.  相似文献   

15.
The impact of human papilloma virus (HPV16) E7 proteins and retinoblastoma (RB) antisense oligonucleotides upon mitogen-activated protein kinase (MAPK)-mediated inhibition of DNA synthesis via p21(Cip-1/WAF1/MDA6) (p21) was determined in primary hepatocytes. Prolonged activation of the MAPK pathway in p21(+/+) or p21(-/-) hepatocytes caused a large decrease and increase, respectively, in DNA synthesis. Either transfection with RB antisense oligonucleotides, expression of wild type E7, or RB binding mutant E7 (C24S) proteins increased p21 levels and reduced DNA synthesis in p21(+/+) hepatocytes. RB antisense oligonucleotides and E7 proteins increased apoptosis in p21(+/+), but not p21(-/-), hepatocytes. Expression of wild type E7 increased DNA synthesis above control levels in p21(-/-) cells, which was additive with prolonged MAPK activation. In contrast, expression of mutant E7 did not alter DNA synthesis above control levels in p21(-/-) cells and was supra-additive with prolonged MAPK activation. Antisense ablation of RB in p21(-/-) hepatocytes had a weak stimulatory effect upon DNA synthesis itself but enhanced the capacity of mutant E7 protein to stimulate DNA synthesis to the same level observed using wild type E7. The ability of prolonged MAPK activation to stimulate DNA synthesis in the presence of mutant E7 and antisense RB was additive. Collectively, the present data demonstrate that loss of RB function together with loss of p21 function plays an important role in the E7- and MAPK-dependent modulation of apoptosis and DNA synthesis in primary hepatocytes.  相似文献   

16.
IL-4 is emerging as a candidate cytokine for the treatment of inflammatory and autoimmune diseases. We have reported that IL-4 has anti-angiogenic activity and inhibits the growth of human umbilical vein endothelial cells (HUVEC) in response to vascular endothelial growth factor (VEGF) or fibroblast growth factor-2 (FGF-2). Cell cycle analysis of this effect revealed that IL-4 arrests the growth of FGF-2-stimulated HUVEC in G0 + G1 phases. The absence of subdiploid cells showed that it did not induce apoptosis. Growth arrest was dose-dependent, but the percentage of G0 + G1 phase cells never exceeded 85%. An immunoblot analysis demonstrated that expression of p53 and p21(Waf1) was increased and that of cyclin D1 and cyclin E decreased by IL-4. These results show that IL-4 inhibits endothelial cell growth by altering the expression of cell cycle regulatory molecules.  相似文献   

17.
The p53 tumor suppressor protein can induce both cell cycle arrest and apoptosis in DNA-damaged cells. In human carcinoma cell lines expressing wild-type p53, expression of E7 allowed the continuation of full cell cycle progression following DNA damage, indicating that E7 can overcome both G1 and G2 blocks imposed by p53. E7 does not interfere with the initial steps of the p53 response, however, and E7 expressing cells showed enhanced expression of p21(waf1/cip1) and reductions in cyclin E- and A-associated kinase activities following DNA damage. One function of cyclin-dependent kinases is to phosphorylate pRB and activate E2F, thus allowing entry into DNA synthesis. Although E7 may substitute for this activity during cell division by directly targeting pRB, continued cell cycle progression in E7-expressing cells was associated with phosphorylation of pRB, suggesting that E7 permits the retention of some cyclin-dependent kinase activity. One source of this activity may be the E7-associated kinase, which was not inhibited following DNA damage. Despite allowing cell cycle progression, E7 was unable to protect cells from p53-induced apoptosis, and the elevated apoptotic response seen in these cells correlated with the reduction of cyclin A-associated kinase activity. It is possible that inefficient cyclin A-dependent inactivation of E2F at the end of DNA synthesis contributes to the enhanced apoptosis displayed by E7-expressing cells.  相似文献   

18.
The human papillomavirus type 16 E5 oncoprotein possesses mitogenic activity that acts synergistically with epidermal growth factor (EGF) in human keratinocytes and inhibits the degradation of the EGF receptor in endosomal compartments after ligand-stimulated endocytosis. One potential explanation for these observations is that E5 inhibits the acidification of endosomes. This may be mediated through the 16-kDa component of the vacuolar proton-ATPase, since animal and human papillomavirus E5 proteins bind this subunit protein. Using a ratio-imaging technique to determine endosomal pH, we found that the acidification of endosomes in E5-expressing keratinocytes was delayed at least fourfold compared with normal human keratinocytes and endosomes in some cells never completely acidified. Furthermore, E5 expression increased the resistance of keratinocytes to protein synthesis inhibition by diphtheria toxin, a process dependent on efficient endosomal acidification. Finally, artificially inhibiting endosomal acidification with chloroquine during the endocytosis of EGF receptors in keratinocytes demonstrated many of the same effects as the expression of human papillomavirus type 16 E5, including prolonged retention of undegraded EGF receptors in intracellular vesicles.  相似文献   

19.
Human papillomavirus 16 E7 (HPV16 E7) and adenovirus 5 E1A (Ad5 E1A) are encoded by highly divergent viruses yet are functionally similar in their ability to bind the retinoblastoma (pRB) tumor suppressor protein, causing the aberrant displacement of E2F trancription factors. The amino acid residues of HPV16 E7 that are necessary for stability, for inhibition of pRB function, and for cell transformation are also necessary for E7 oligomerization. However, neither the specific oligomerization state of HPV16 E7 nor of Ad5 E1A as a function of pRB-binding has been characterized. To gain insight into HPV16 E7 and Ad5 E1A oligomerization properties, sedimentation equilibrium experiments were performed with recombinant HPV16 E7 and Ad5 E1A proteins. These studies reveal that, despite the overall functional similarities between these proteins, monomers, dimers, and tetramers of HPV16 E7 were detected while only reversible monomer-dimer association was identified for Ad5 E1A. The apparent K(d(monomer)-(dimer)) of HPV16 E7 is approximately 100-fold lower than that of a comparable region of Ad5 E1A, and it is concluded that under physiological protein concentrations HPV16 E7 exists primarily as a dimer. Sedimentation equilibrium experiments of pRB/Ad5 E1A and of pRB/HPV16 E7 complexes demonstrate that the tight association of pRB with the viral oncoproteins does not disturb their inherent oligomerization properties. Taken together, this study demonstrates significant differences between the Ad5 E1A and HPV16 E7 oligomerization states that are potentially related to their distinct structures and specific mechanisms of pRB-inactivation.  相似文献   

20.
To investigate E7-dependent biochemical changes which are involved in cellular transformation, we analyzed the influence of human papillomavirus type 16 (HPV-16) E7 on the expression of cell cycle regulatory proteins. Expression of E7 in established rodent fibroblasts (NIH 3T3), which was shown to be sufficient for transformation of these cells, leads to constitutive expression of the cyclin E and cyclin A genes in the absence of external growth factors. Surprisingly, expression of the cyclin D1 gene, which encodes a major regulator of G1 progression, is unaltered in E7-transformed cells. In transient transfection experiments, the cyclin A gene promoter is activated by E7 via an E2F binding site. In 14/2 cells, which were used as a model system to analyze the role of HPV-16 E7 in the transformation of primary cells, we observed rapid E7-dependent activation of cyclin E gene expression, which can be uncoupled from activation of the cyclin A gene, since the latter requires additional protein synthesis. E7-driven induction of cyclin E and cyclin A gene expression was accompanied by an increase in the associated kinase activities. Two domains of the E7 oncoprotein, which are designated cd1 and cd2, are essential for transformation of rodent fibroblasts. It is shown here that growth factor-independent expression of the cyclin E gene requires cd2 but not cd1, while activation of cyclin A gene expression requires cd1 function in addition to that of cd2. These data suggest that cyclin A gene expression is controlled by two distinct negative signals, one of which also restricts expression of the cyclin E gene. The ability of E7 to separately override each of these inhibitory signals, via cd1 and cd2, cosegregates with its ability to fully transform rodent fibroblasts. Unlike serum growth factors, E7 induces S-phase entry without activating cyclin D1 gene expression, in keeping with the finding that cyclin D1 function is not required in cells transformed by DNA tumor viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号