首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that a deficit in oxygen extraction or an increase in oxygen demand after skeletal muscle contraction leads to delayed recovery of tissue oxygen tension (Po(2)) in the skeletal muscle of hypertensive rats compared with normotensive rats. Blood flow and Po(2) recovery at various sites in the spinotrapezius muscle of spontaneously hypertensive rats (SHRs) were evaluated after a 3-min period of muscle contraction and were compared with corresponding values in Wistar-Kyoto rats (WKYs). The recovery of tissue Po(2) [75 +/- 7 (SHRs) vs. 99 +/- 12% (WKYs) of resting values] and venular Po(2) [72 +/- 13 (SHRs) vs. 104 +/- 10% (WKYs) of resting values] were significantly depressed in the SHRs 30 s postcontraction. The delayed recovery persisted for 120 s postcontraction for both tissue [86 +/- 11 (SHRs) vs. 119 +/- 13% (WKYs) of resting values] and venular [74 +/- 2 (SHRs) vs. 100 +/- 9% (WKYs) of resting values] Po(2) levels. There was no significant difference in the recovery of arteriolar Po(2) between the two groups 30 s postcontraction [95 +/- 7 (SHRs) vs. 84 +/- 8% (WKYs) of resting values]. Values for resting diameter of arcade arterioles in the two groups were not different [52 +/- 3 (SHRs) vs. 51 +/- 3 microm (WKYs)], but the arteriolar diameter after the 3-min contraction period was greater in the SHRs (71 +/- 4 microm) than the WKYs (66 +/- 4). Likewise, red blood cell (RBC) velocity [5.8 +/- 0.3 (SHRs) vs. 4.7 +/- 0.2 mm/s (WKYs)] and blood flow [23.0 +/- 0.8 (SHRs) vs. 16.0 +/- 1.0 nl/s (WKYs)] measurements were significantly greater in the SHRs at 30 s postcontraction. The delayed recovery of tissue Po(2) in the SHRs compared with the WKYs can be explained by a decrease in oxygen diffusion from the rarefied microvascular network due to the increased RBC velocity and the shorter residence time in the microcirculation and the consequent disequilibrium for oxygen between plasma and RBCs. The delayed recovery of venular Po(2) in the SHRs is consistent with this explanation, as venular Po(2) is slowly restored to baseline by release of oxygen from the RBCs. This leaves the arterioles in the primary role as oxygen suppliers to restore Po(2) in the tissue after muscle contraction.  相似文献   

2.
Responses to exchange transfusion using red blood cells (RBCs) with normal and reduced flexibility were studied in the hamster window chamber model during acute moderate isovolemic hemodilution to determine the role of RBC membrane stiffness in microvascular perfusion and tissue oxygenation. Erythrocyte stiffness was increased by 30-min incubation in 0.02% glutaraldehyde solution, and unreacted glutaraldehyde was completely removed. Filtration pressure through 5-microm pore size filters was used to quantify stiffness of the RBCs. Anemic conditions were induced by two isovolemic hemodilution steps using 6% 70-kDa dextran to a hematocrit (Hct) of 18% (moderate hemodilution). The protocol continued with an exchange transfusion to reduce native RBCs to 75% of baseline (11% Hct) with either fresh RBCs (RBC group) or reduced-flexibility RBCs (GRBC group) suspended in 5% albumin at 18% Hct; a plasma expander (6% 70-kDa dextran; Dex70 group) was used as control. Systemic parameters, microvascular perfusion, capillary perfusion [functional capillary density (FCD)], and oxygen levels across the microvascular network were measured by noninvasive methods. RBC deformability for GRBCs was significantly decreased compared with RBCs and moderate hemodilution conditions. The GRBC group had a greater mean arterial blood pressure (MAP) than the RBC and Dex70 groups. FCD was substantially higher for RBC (0.81 +/- 0.07 of baseline) vs. GRBC (0.32 +/- 0.10 of baseline) and Dex70 (0.38 +/- 0.10 of baseline) groups. Microvascular tissue Po(2) was significantly lower for Dex70 and GRBC vs. RBC groups and the moderate hemodilution condition. Results were attributed to decreased oxygen uploading in the lungs and obstruction of tissue capillaries by rigidified RBCs, indicating that the effects impairing RBC flexibility are magnified at the microvascular level, where perfusion and oxygenation may define transfusion outcome.  相似文献   

3.
Mathematical simulations of oxygen delivery to tissue from capillaries that take into account the particulate nature of blood flow predict the existence of oxygen tension (Po(2)) gradients between erythrocytes (RBCs). As RBCs and plasma alternately pass an observation point, these gradients are manifested as rapid fluctuations in Po(2), also known as erythrocyte-associated transients (EATs). The impact of hemodilution on EATs and oxygen delivery at the capillary level of the microcirculation has yet to be elucidated. Therefore, in the present study, phosphorescence quenching microscopy was used to measure EATs and Po(2) in capillaries of the rat spinotrapezius muscle at the following systemic hematocrits (Hct(sys)): normal (39%) and after moderate (HES1; 27%) or severe (HES2; 15%) isovolemic hemodilution using a 6% hetastarch solution. A 532-nm laser, generating 10-micros pulses concentrated onto a 0.9-microm spot, was used to obtain plasma Po(2) values 100 times/s at points along surface capillaries of the muscle. Mean capillary Po(2) (Pc(O(2)); means +/- SE) significantly decreased between conditions (normal: 56 +/- 2 mmHg, n = 45; HES1: 47 +/- 2 mmHg, n = 62; HES2: 27 +/- 2 mmHg, n = 52, where n = capillary number). In addition, the magnitude of Po(2) transients (DeltaPo(2)) significantly decreased with hemodilution (normal: 19 +/- 1 mmHg, n = 45; HES1: 11 +/- 1 mmHg, n = 62; HES2: 6 +/- 1 mmHg, n = 52). Results suggest that the decrease in Pc(O(2)) and DeltaPo(2) with hemodilution is primarily dependent on Hct(sys) and subsequent microvascular compensations.  相似文献   

4.
Previous in vitro studies of blood flow in small glass tubes have shown that red blood cells exhibit significant erratic deviations in the radial position in the laminar flow regime. The purpose of the present study was to assess the magnitude of this variability and that of velocity in vivo and the effect of red blood cell aggregation and shear rate upon them. With the use of a gated image intensifier and fluorescently labeled red blood cells in tracer quantities, we obtained multiple measurements of red blood cell radial and longitudinal positions at time intervals as short as 5 ms within single venous microvessels (diameter range 45-75 microm) of the rat spinotrapezius muscle. For nonaggregating red blood cells in the velocity range of 0.3-14 mm/s, the mean coefficient of variation of velocity was 16.9 +/- 10.5% and the SD of the radial position was 1.98 +/- 0.98 microm. Both quantities were inversely related to shear rate, and the former was significantly lowered on induction of red blood cell aggregation by the addition of Dextran 500 to the blood. The shear-induced random movements observed in this study may increase the radial transport of particles and solutes within the bloodstream by orders of magnitude.  相似文献   

5.
The effect of isovolemic hemodilution on the circulation of red blood cells (RBCs) in the cerebrocortical capillary network was studied by intravital videomicroscopy with use of a closed-cranial-window technique in the rat. Velocity and supply rate of RBCs were measured by tracking the movement and counting the number of fluorescently labeled cells. Arterial blood was withdrawn in increments of 2 ml and replaced by serum albumin. Arterial blood pressure was maintained constant with an infusion of methoxamine. Both velocity and supply rate of RBCs increased, by approximately equal amounts, as arterial hematocrit was reduced from 44 to 15%. The maximum increase in RBC velocity was 4.6 and in RBC supply rate was 5.2 times the baseline value. Calculated lineal density of RBC, an index of capillary hematocrit, did not change with hemodilution. The results suggest that RBC flow and oxygen supply in the cerebral capillary network are maintained during isovolemic hemodilution. The "optimal hematocrit" is as low as 15%.  相似文献   

6.
The rate of oxygen release from arterioles ( approximately 55 microm diameter) was measured in the hamster window chamber model during flow and no-flow conditions. Flow was stopped by microvascular transcutaneous occlusion using a glass pipette held by a manipulator. The reduction of the intra-arteriolar oxygen tension (Po2) was measured by the phosphorescence quenching of preinfused Pd-porphyrin, 100 microm downstream from the occlusion. Oxygen release from arterioles was found to be 53% greater during flow than no-flow conditions (2.6 vs. 1.7 x 10(-5) ml O2.cm(-2).s(-1), P < 0.05). Acute hemodilution with dextran 70 was used to reduce vessel oxygen content, significantly increase wall shear stress (14%, P < 0.05), reduce Hct to 28.4% (SD 1.0) [vs. 48.8% (SD 1.8) at baseline], lower oxygen supply by the arterioles (10%, P < 0.05), and increase oxygen release from the arterioles (39%, P < 0.05). Hemodilution also increased microcirculation oxygen extraction (33% greater than nonhemodilution, P < 0.05) and oxygen consumption by the vessel wall, as shown by an increase in vessel wall oxygen gradient [difference in Po2 between the blood and the tissue side of the arteriolar wall, nonhemodiluted 16.2 Torr (SD 1.0) vs. hemodiluted 18.3 Torr (SD 1.4), P < 0.05]. Oxygen released by the arterioles during flow vs. nonflow was increased significantly after hemodilution (3.6 vs. 1.8 x 10(-5) ml O2.cm(-2).s(-1), P < 0.05). The oxygen cost induced by wall shear stress, suggested by our findings, may be >15% of the total oxygen delivery to tissues by arterioles during flow in this preparation.  相似文献   

7.
A surface-modified polyethylene glycol-conjugated human hemoglobin (MP4) and alpha alpha-cross-linked human hemoglobin (alpha alpha Hb) were used to restore oxygen carrying capacity in conditions of extreme hemodilution (hematocrit 11%) in the hamster window model preparation. Changes in microvascular function were analyzed in terms of effects on capillary pressure and functional capillary density (FCD). MP4, at 1.0 +/- 0.2 g/dl blood concentration, significantly lowered mean arterial pressure (MAP) below baseline (99.6 +/- 7.6 mmHg) to 82.4 +/- 6.9 mmHg (P < 0.05) and decreased of FCD to 70 +/- 9%. alpha alpha Hb caused a greater recovery in MAP to 94.4 +/- 6.2 mmHg and lowered FCD to 62 +/- 8%. However, differences between alpha alpha Hb and MP4 in FCD were not statistically significant. Capillary pressures were in the ranges of 17-21 mmHg for MP4 and 15-19 mmHg for alpha alpha Hb, with both significantly lower than baseline (P < 0.05). Pressure in 80-microm-diameter arterioles was significantly increased with alpha alpha Hb relative to MP4 (P < 0.05). These results were compared with previous findings on the relation between capillary pressure and FCD; they supported the concept of a relationship between FCD and capillary pressure. Measurement of changes in arteriolar diameter, microvascular blood flow, and FCD show that there was no statistical difference between using alpha alpha Hb and MP4 in extreme hemodilution. Microvascular resistance in arterioles with a diameter range of 70-80 microm showed an increase relative to control with alpha alpha Hb, whereas MP4 caused a decrease.  相似文献   

8.
The flow properties of blood in the microcirculation depend strongly on the hematocrit (Hct), microvessel geometry, and cell properties. Previous in vitro studies have measured the radial displacement of red blood cells (RBCs) at concentrated suspensions using conventional microscopes. However, to measure the RBCs motion they used transparent suspensions of ghost red cells, which may have different physical properties than normal RBCs. The present study introduces a new approach (confocal micro-PTV) to measure the motion of labeled RBCs flowing in concentrated suspensions of normal RBCs. The ability of confocal systems to obtain thin in-focus planes allowed us to measure the radial position of individual RBCs accurately and to consequently measure the interaction between multiple labeled RBCs. All the measurements were performed in the center plane of both 50 and 100 microm glass capillaries at Reynolds numbers (Re) from 0.003 to 0.005 using Hcts from 2% to 35%. To quantify the motion and interaction of multiple RBCs, we used the RBC radial dispersion (D(yy)). Our results clearly demonstrate that D(yy) strongly depends on the Hct. The RBCs exhibited higher D(yy) at radial positions between 0.4 and 0.8R and lower D(yy) at locations adjacent to the wall (0.8-1R) and around the middle of the capillary (0-0.2R). The present work also demonstrates that D(yy) tends to decrease with a decrease in the diameter. The information provided by this study not only complements previous investigations on microhemorheology of both dilute and concentrated suspensions of RBCs, but also shows the influence of both Hct and geometry on the radial dispersion of RBCs. This information is important for a better understanding of blood mass transport mechanisms under both physiological and pathological conditions.  相似文献   

9.
The purpose of this investigation was to study the effect of the presence of red blood cells (RBCs) in the plasma layer near the arteriole wall on nitric oxide (NO) and oxygen (O2) transport. To this end, we extended a coupled NO and O2 diffusion-reaction model in the arteriole, developed by our group, to include the effect of the presence of RBCs in the plasma layer and the effect of convection. Two blood flow velocity profiles (plug and parabolic) were tested. The average hematocrit in the bloodstream was assumed to be constant in the central core and decreasing to zero in the boundary layer next to the endothelial surface layer. The effect of the presence or absence of RBCs near the endothelium was studied while varying the endothelial surface layer and boundary layer thickness. With RBCs present in the boundary layer, the model predicts that 1) NO decreases significantly in the endothelium and vascular wall; 2) there is a very small increase in endothelial and vascular wall Po2; 3) scavenging of NO by hemoglobin decreases with increasing thickness of the boundary layer; 4) the shape of the velocity profile influences both NO and Po2 gradients in the bloodstream; and 5) the presence of RBCs in the boundary layer near the endothelium has a much larger effect on NO than on O2 transport.  相似文献   

10.
Using a fine-tip oxygen microelectrodes the longitudinal gradients of oxygen tension (pO2) have been studied in small arterioles (with lumen diameter in control of 5 +/- 20 microm) and in capillaries of the rat brain cortex during stepwise decrease of the blood haemoglobin concentration [Hb] from control [Hb]--14.4 +/- 0.3 g/dl to 10.1 +/- 0.2 g/dl (step 1), 7.0 +/- 0.2 g/dl (step 2) and 3.7 +/- 0.2 g/dl (step 3). All data are presented as "mean +/- standard error". Oxygen tension was measured in arteriolar segments in two locations distanced deltaL = 265 +/- 34 microm, n = 30. Mean diameter of studied arterioles was 10.7 +/- 0.5 microm, n = 71. Length of studied capillary segments was about deltaL = 201 +/- 45 Mm, n = 18. The measured longitudinal pO2 gradient (deltapO2/deltaL) in arterioles amounted 0.03 +/- 0.01 mmHg/microm, n = 15 in control; 0.06 +/- 0.01 mmHg/microm, n = 16 (step 1); 0.07 +/- +/- 0.01 mmHg/microm, n = 14 (step 2); 0.1 +/- 0.01 mmHg/microm, n = 30 (step 3). In the capillaries, the deltapO2/deltaL amounted to: 0.07 +/- 0.01 mmHg/microm, n = 17 (control); 0.09 +/- 0.02 mmHg/microm, n = 16 (step 1); 0.08 +/- 0.01 mmHg/microm, n = 15 (step 2); 0.1 +/- 0.02 mmHg/microm, n = 18 (step 3). An over threefold decrease in the system blood oxygen capacity did not result in significant changes (p > 0.05) of the deltapO2/deltaL in capillaries that might result in relatively homogeneous oxygen flux from blood to tissue in acute anaemia. The longitudinal gradients of blood O2 saturation (deltaSO2/deltaL) in studied arterioles and capillaries were obtained using oxygen dissociation curve (ODC) of haemoglobin in the system blood. The gradients deltaSO2/deltaL in capillaries was shown to be threefold higher than the corresponding gradients in arterioles. The data show that anatomic capillaries are the main source of oxygen to brain tissue as in control and in hypoxic conditions. Sufficient oxygen delivery to brain tissue in acute anaemia is maintained by compensatory mechanisms of cardiovascular and respiratory systems. The data presented are the first measurements of the longitudinal pO, gradients in capillaries and minute cortical arterioles at acute anaemia.  相似文献   

11.
A scanning phosphorescence quenching microscopy technique, designed to prevent accumulated O(2) consumption by the method, was applied to Po(2) measurements in mesenteric tissue. In an attempt to further increase the accuracy of the measurements, albumin-bound probe was topically applied to the tissue and an objective-mounted pressurized bag was used to reduce the oxygen transport bypass through the thin layer of fluid over the mesentery. Po(2) was measured at multiple sites perpendicular to the blood/wall interface in the vicinity of 84 mesenteric arterioles (7-39 microm in diameter) at distances of 5, 15, 30, 60, 120, and 180 microm in seven anesthetized Sprague-Dawley rats, thereby creating Po(2) profiles. Interstitial Po(2) above and immediately beside arterioles was found to agree with known intravascular values. No significant difference in Po(2) profiles was found between small and large arterioles, indicating a small longitudinal Po(2) gradient in the precapillary mesenteric microvasculature. In addition, the Po(2) profiles were used to calculate oxygen consumption in the mesenteric tissue (56-65 nl O(2) x cm(-3) x s(-1)). Correction of these values for contamination with ambient oxygen yielded an oxygen consumption rate of 60-68 nl O(2) x cm(-3) x s(-1), the maximal limit for consumption in the mesentery. The results were compared with measurements made by other workers in regard to the employed techniques.  相似文献   

12.
Extreme hemodilution was performed in the hamster chamber window model using 6% Dextran 70, lowering systemic hematocrit by 60%. Animals were subsequently divided into three groups and hemodiluted to a hematocrit of 11% using 6% Dextran 70, 6% Dextran 500, and a 4% Dextran 70 + 0.7% alginate solution (n = 6 each group). Final plasma viscosities were 1.4 +/- 0.2, 2.2 +/- 0.1, and 2.7 +/- 0.2 cp, respectively, (P < 0.05, high viscosity vs. low viscosity). Blood viscosities were 2.1 +/- 0.2, 2.9 +/- 0.4, and 3.9 +/- 0.3 cp, respectively. The lowest blood and plasma viscosity group had a significantly lower functional capillary density, 37 +/- 16%, whereas the two high-viscosity solutions were 71 +/- 15% and 76 +/- 12% (P < 0.05, high viscosity vs. low viscosity), respectively. Arteriolar and venular flow in the Dextran 500 and alginate groups was higher than baseline (i.e., normal nontreated animals), whereas the low-viscosity group showed a reduction in flow. These microvascular changes were paralleled by changes in base excess, which was negative for the Dextran 70 group and positive for the other groups. However, tissue Po(2) was uniformly low for all groups (average of 1.4 mmHg). Calculation of tissue oxygen consumption in the window chamber based on the microvascular data, flow, and intravascular Po(2) showed that only the alginate + Dextran 70 solution-exchanged animals returned to baseline oxygen consumption, whereas the other groups were lower than baseline (P < 0.05). These results show that hemodilution performed with high-viscosity plasma expanders yields systemic arterial pressures and functional capillary densities that are significantly higher (P < 0.05) than those obtained with 6% Dextran 70, a fluid whose viscosity is similar to that of plasma. A condition for obtaining these results is that the oncotic pressure of the plasma expander be titrated to near normal, so that autotransfusion of fluid from the tissue into the vascular compartment does not reduce the effects of increasing plasma viscosity and increased shear stress on the microvascular wall.  相似文献   

13.
Red blood cell (RBC) encapsulated hemoglobin in the blood scavenges nitric oxide (NO) much more slowly than cell-free hemoglobin would. Part of this reduced NO scavenging has been attributed to an intrinsic membrane barrier to diffusion of NO through the RBC membrane. Published values for the permeability of RBCs to NO vary over several orders of magnitude. Recently, the rate that RBCs scavenge NO has been shown to depend on the hematocrit (percentage volume of RBCs) and oxygen tension. The difference in rate constants was hypothesized to be due to oxygen modulation of the RBC membrane permeability, but also could have been due to the difference in bimolecular rate constants for the reaction of NO and oxygenated vs deoxygenated hemoglobin. Here, we model NO scavenging by RBCs under previously published experimental conditions. A finite-element based computer program model is constrained by published values for the reaction rates of NO with oxygenated and deoxygenated hemoglobin as well as RBC NO scavenging rates. We find that the permeability of RBCs to NO under oxygenated conditions is between 4400 and 5100 microm s(-1) while the permeability under deoxygenated conditions is greater than 64,000 microm s(-1). The permeability changes by a factor of 10 or more upon oxygenation of anoxic RBCs. These results may have important implications with respect to NO import or export in physiology.  相似文献   

14.
The oxygen transport capacity of nonhypertensive polyethylene glycol (PEG)-conjugated hemoglobin solutions were investigated in the hamster chamber window model. Microvascular measurements were made to determine oxygen delivery in conditions of extreme hemodilution [hematocrit (Hct) 11%]. Two isovolemic hemodilution steps were performed with a 6% Dextran 70 (70-kDa molecular mass) plasma expander until Hct was 35% of control. Isovolemic blood volume exchange was continued using two surface-modified PEGylated hemoglobins (P5K2, P(50) = 8.6, and P10K2, P(50) = 8.3; P(50) is the hemoglobin Po(2) corresponding to its 50% oxygen saturation) until Hct was 11%. P5K2 and P10K2 are PEG-conjugated hemoglobins that maintain most of the hemoglobin allosteric properties and have a cooperativity index of n = 2.2. The effects of these molecular solutions were compared with those obtained in a previous study using MP4, a PEG-modified hemoglobin whose P(50) was 5.4 and cooperativity was 1.2 (Tsai et al., Am J Physiol Heart Circ Physiol 285: H1411-H1419, 2003). Tissue oxygen levels were higher after P5K2 (7.0 +/- 2.5 mmHg) and P10K2 (6.3 +/- 2.3 mmHg) versus MP4 (1.7 +/- 0.5 mmHg) or the nonoxygen carrier Dextran 70 (1.3 +/- 1.2 mmHg). Microvascular oxygen delivery was higher after P5K2 and P10K2 (2.22 and 2.34 ml O(2)/dl blood) compared with MP4 (1.41 ml O(2)/dl blood) or Dextran 70 (0.90 ml O(2)/dl blood); however, all these values were lower than control (7.42 ml O(2)/dl blood). The total hemoglobin in blood was similar in all cases; therefore, the improvement in tissue Po(2) and oxygen delivery appears to be due to the increased cooperativity of the new molecules.  相似文献   

15.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

16.
This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.  相似文献   

17.
This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.  相似文献   

18.
Endothelium-derived nitric oxide (NO) is a potent vasodilator in the cardiovascular system. Several lines of experimental evidence suggest that NO or NO equivalents may also be generated in the blood. However, blood contains a large amount of hemoglobin (Hb) in red blood cells (RBCs). The RBC-encapsulated Hb can react very quickly with NO, which is only limited by the rate of NO diffusion into the RBCs. It is unclear what the possible NO concentration levels in blood are and how the NO diffusion coefficient (D) and the permeability (Pm) of RBC membrane to NO affect the level of NO concentration. In this study, a steady-state concentration experimental method combined with a spherical diffusion model are presented for determining D and Pm and examining the effect of NO generation rate (V0) and hematocrit (Hct) on NO concentration. It was determined that Pm is 4.5 +/- 1.5 cm/s and D is 3410 +/- 50 microm2/s at 37 degrees C. Simulations based on experimental parameters show that, when the rate of NO formation is as high as 100 nm/s, the maximal NO concentration in blood is below 0.012 nM at Pm = 4.5 cm/s and Hct = 45%. Thus, it is unlikely that NO is directly exported or generated from the RBC as an intravascular signaling molecule, because its concentration would be too low to exert a physiological role. Furthermore, our results suggest that, if RBCs export NO bioactivity, this would be through NO-derived species that can release or form NO rather than NO itself.  相似文献   

19.
We studied the effects of normovolemic hemodilution on tissue oxygen extraction capabilities in a canine model of endotoxic shock. Eighteen anesthetized and mechanically ventilated dogs underwent normovolemic hemodilution with 6% hydroxyethyl starch solution to reach hematocrit (Hct) levels around 40, 30, or 20% before the administration of 2 mg/kg of Escherichia coli endotoxin. Cardiac tamponade was then induced by repeated injections of normal saline into the pericardial sac to reduce cardiac output and study whole body oxygen extraction capabilities. Whole body critical oxygen delivery was lower in the Hct 20% and 30% groups (8.4 +/- 0.4 and 10.4 +/- 0.7 ml. kg(-1). min(-1), respectively) than in the Hct 40% group (12.8 +/- 0.8 ml. kg(-1). min(-1)) (both P < 0.005). The whole body critical oxygen extraction ratio was higher in the Hct 30% and 20% groups (49.1 +/- 8.2 and 55.2 +/- 4.6%, respectively) than in the Hct 40% group (37.1 +/- 4.4 %) (both P < 0.05). Liver critical oxygen extraction ratio was also higher in the Hct 30% and 20% groups than in the Hct 40% group. The arterial lactate concentrations and the gradient between ileum mucosal PCO(2) and arterial PCO(2) were lower in the Hct 20% and 30% groups than in the Hct 40% group. We conclude that, during an acute reduction in blood flow during endotoxic shock in dogs, normovolemic hemodilution is associated with improved tissue perfusion and increased oxygen extraction capabilities.  相似文献   

20.
Mesoscale simulation of blood flow in small vessels   总被引:1,自引:0,他引:1       下载免费PDF全文
Bagchi P 《Biophysical journal》2007,92(6):1858-1877
Computational modeling of blood flow in microvessels with internal diameter 20-500 microm is a major challenge. It is because blood in such vessels behaves as a multiphase suspension of deformable particles. A continuum model of blood is not adequate if the motion of individual red blood cells in the suspension is of interest. At the same time, multiple cells, often a few thousands in number, must also be considered to account for cell-cell hydrodynamic interaction. Moreover, the red blood cells (RBCs) are highly deformable. Deformation of the cells must also be considered in the model, as it is a major determinant of many physiologically significant phenomena, such as formation of a cell-free layer, and the Fahraeus-Lindqvist effect. In this article, we present two-dimensional computational simulation of blood flow in vessels of size 20-300 microm at discharge hematocrit of 10-60%, taking into consideration the particulate nature of blood and cell deformation. The numerical model is based on the immersed boundary method, and the red blood cells are modeled as liquid capsules. A large RBC population comprising of as many as 2500 cells are simulated. Migration of the cells normal to the wall of the vessel and the formation of the cell-free layer are studied. Results on the trajectory and velocity traces of the RBCs, and their fluctuations are presented. Also presented are the results on the plug-flow velocity profile of blood, the apparent viscosity, and the Fahraeus-Lindqvist effect. The numerical results also allow us to investigate the variation of apparent blood viscosity along the cross-section of a vessel. The computational results are compared with the experimental results. To the best of our knowledge, this article presents the first simulation to simultaneously consider a large ensemble of red blood cells and the cell deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号