首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The wild nightshades Solanum lycopersicoides and Solanum sitiens are closely affiliated with the tomatoes (Lycopersicon spp.). Intergeneric hybridization with cultivated tomato (Lycopersicon esculentum) is impeded by strong reproductive barriers including hybrid sterility and suppressed recombination. Conservation of genome structure between these nightshades and tomato was studied by construction of a genetic map from F2 S. sitiens x S. lycopersicoides and comparison with existing maps of tomato. Owing to self-incompatibility of the F1, two hybrid plants were crossed to obtain a population of 82 F2 individuals. Using 166 previously mapped RFLP markers and 5 restriction enzymes, 101 loci polymorphic in the S. sitiens x S. lycopersicoides population were identified. Analysis of linkage between the markers resulted in a map with 12 linkage groups covering 1192 cM and one unlinked marker. Recombination rates were similar to those observed in tomato; however, significant segregation distortion was observed for markers on 7 out of the 12 chromosomes. All chromosomes were colinear with the tomato map, except for chromosome 10, where a paracentric inversion on the long arm was detected. In this region, S. sitiens and S. lycopersicoides share the same chromosomal configuration previously reported for potato (S. tuberosum) and pepper (Capsicum), suggesting that of tomato is derived. The 10L inversion explains the lack of recombination detected among homeologous chromosomes of intergeneric hybrids in this region. On this basis, we recognize two principle genomes, designated L for the Lycopersicon spp., and S for S. lycopersicoides and S. sitiens, the first examples of structural differentiation between tomato and its cross-compatible wild relatives.  相似文献   

2.
Chetelat RT  Meglic V  Cisneros P 《Genetics》2000,154(2):857-867
F(1) hybrids between the cultivated tomato (Lycopersicon esculentum) and the wild nightshade Solanum lycopersicoides are male sterile and unilaterally incompatible, breeding barriers that impede further crosses to tomato. Meiosis is disrupted in 2x hybrids, with reduced chiasma formation and frequent univalents, but is normal in allotetraploid hybrids, indicating the genomes are homeologous. In this study, a partially male-fertile F(1) was backcrossed to tomato, producing the first BC(1) population suitable for genetic mapping from this cross. BC(1) plants were genotyped at marker loci to study the transmission of wild alleles and to measure rates of homeologous recombination. The pattern of segregation distortion, in favor of homozygotes on chromosomes 2 and 5 and heterozygotes on chromosomes 6 and 9, suggested linkage to a small number of loci under selection on each chromosome. Genome ratios nonetheless fit Mendelian expectations. Resulting genetic maps were essentially colinear with existing tomato maps but showed an overall reduction in recombination of approximately 27%. Recombination suppression was observed for all chromosomes except 9 and 12, affected both proximal and distal regions, and was most severe on chromosome 10 (70% reduction). Recombination between markers on the long arm of this chromosome was completely eliminated, suggesting a lack of colinearity between S. lycopersicoides and L. esculentum homeologues in this region. Results are discussed with respect to phylogenetic relationships between the species and their potential use for studies of homeologous pairing and recombination in a diploid plant genome.  相似文献   

3.
A set of introgression lines (ILs), containing individual chromosome segments from the wild nightshade Solanum lycopersicoides bred into the genetic background of cultivated tomato (Lycopersicon esculentum), has been developed. A primary group of 56 lines was selected for maximum representation of the S. lycopersicoides genome (approximately 96% of the total map units), homozygosity, and a minimum number of introgressed segments per line. A secondary set of 34 lines provides increased map resolution in certain regions. Approximately 34% of the lines were sterile in the homozygous condition, but could be maintained by heterozygotes. To facilitate identification of segregating ILs, restriction fragment length polymorphism probes were converted to higher throughput cleaved amplified polymorphic sequence markers, which supplement allozyme and morphological loci. Strong segregation distortion was observed in F2 progeny of heterozygous ILs, with an excess of L. esculentum alleles in most regions. For introgressions on distal chromosome 1L, a preferential transmission of S. lycopersicoides alleles was observed in the male germ line. Homozygous ILs generally yielded less seed from self pollination than corresponding heterozygotes, indicating that sterility effects were recessive. This IL library provides a novel resource for genetic studies of traits found in S. lycopersicoides.  相似文献   

4.
Summary Somatic hybrid plants were produced by fusion of birdsfoot trefoil (Lotus corniculatus) cv Leo and L. conimbricensis Willd. protoplasts. Birdsfoot trefoil etiolated hypocotyl protoplasts were inactivated with iodoacetate to inhibit cell division prior to fusion with L. conimbricensis suspension culture protoplasts. L. conimbricensis protoplasts divided to form callus which did not regenerate plants. Thus, plant regeneration from protoplast-derived callus was used to tentatively identify somatic hybrid cell lines. Plants regenerated from three cell lines exhibited additive combinations of parental isozymes of phosphoglucomutase, and L. conimbricensis-specific esterases indicating that they were somatic hybrids. The somatic chromosome number of one somatic hybrid was 36. The other somatic hybrid exhibited variable chromosome numbers ranging from 33 to 40. These observations approximate the expected combination of the birdsfoot trefoil (2n=4x=24) and L. conimbricensis (2n=2x=12) genomes. Somatic hybrid flowers were less yellow than birdsfoot trefoil flowers and had purple keel tips, a trait inherited from the white flowered L. conimbricensis. Somatic hybrids also had inflorescence structure that was intermediate to the parents. Fifteen somatic hybrid plants regenerated from the three callus lines were male sterile. Successul fertilization in backcrosses with birdsfoot trefoil pollen has not yet been obtained suggesting that the hybrids are also female sterile. This is the first example of somatic hybridization between these two sexually incompatible Lotus species.Formerly USDA-ARS, St. Paul, Minn, USA  相似文献   

5.
Summary Somatic hybrid plants were recovered following fusion of leaf mesophyll protoplasts isolated from tomato (Lycopersicon esculentum) cultivar UC82 with protoplasts isolated from suspension cultured cells of L. chilense, LA 1959. Iodoacetate was used to select against the growth of unfused tomato protoplasts. Two somatic hybrids were recovered in a population of 16 regenerants. No tomato regenerants were recovered; all of the non-hybrid regenerants were L. chilense. The L. chilense protoplast regenerants were tetraploid. The hybrid nature of the plants was verified using species-specific restriction fragment length polymorphisms for the nuclear, chloroplast and mitochondrial genomes. The somatic hybrids had inherited the chloroplast DNA of the tomato parent, and portions of the mitochondrial DNA of the L. chilense parent. The somatic hybrids formed flowers and developed seedless fruit.  相似文献   

6.
Canady MA  Ji Y  Chetelat RT 《Genetics》2006,174(4):1775-1788
A library of "introgression lines" containing Solanum lycopersicoides chromosome segments in the genetic background of cultivated tomato (Lycopersicon esculentum) was used to study factors affecting homeologous recombination. Recombination rates were estimated in progeny of 43 heterozygous introgressions and whole-chromosome substitution lines, together representing 11 of the 12 tomato chromosomes. Recombination within homeologous segments was reduced to as little as 0-10% of expected frequencies. Relative recombination rates were positively correlated with the length of introgressed segments on the tomato map. The highest recombination (up to 40-50% of normal) was observed in long introgressions or substitution lines. Double-introgression lines containing two homeologous segments on opposite chromosome arms were synthesized to increase their combined length. Recombination was higher in the double than in the single segment lines, despite a preference for crossovers in the region of homology between segments. A greater increase in homeologous recombination was obtained by crossing the S. lycopersicoides introgression lines to L. pennellii--a phylogenetically intermediate species--or to L. esculentum lines containing single L. pennellii segments on the same chromosome. Recombination rates were highest in regions of overlap between S. lycopersicoides and L. pennellii segments. The potential application of these results to breeding with introgression lines is discussed.  相似文献   

7.
Summary Somatic hybridization of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola), a close relative of barnyard millet, was attempted using electrofusion and a new culture method developed for rice protoplasts (Kyozuka et al. 1987) to incorporate some of the agronomically important characters of the latter species into rice. Selection of hybrids was based on inactivation of rice protoplasts by iodoacetamide and the inability of barnyard grass protoplasts to divide. A total of 166 calli were identified as hybrids by isozyme and chromosome analyses. Hybrid calli were highly morphogenic, and 44 shoots were obtained. Most of them, however, were abnormal, and nine grew to plantlets whose morphology was distinct from that of either parent. Our study clearly demonstrates the totipotency of protoplasts in graminaceous monocots.  相似文献   

8.
Summary Asymmetric somatic hybrid plants were obtained by a modified PEG/DMSO fusion procedure between protoplasts derived from suspension cells of an interspecific tomato hybrid, Lycopersicon esculentum x L. pennellii, and mesophyll protoplasts of Solanum melongena, eggplant. The tomato hybrid was previously transformed with Agrobacterium tumefaciens and contained the kanamycin-resistance marker gene. Prior to fusion, the donor protoplasts of the tomato hybrid were gamma irradiated at 9.0 krad. Thus, non-division of irradiated tomato hybrid protoplasts coupled with kanamycin sensitivity of eggplant enabled selection of somatic cell hybrids. Forty-nine calli selected post-fusion regenerated leaf-like structures in the presence of 50 mg/l kanamycin. However, only four of the 49 calli regenerated intact shoots which rooted in the presence of 50 mg/l kanamycin and were later transferred to the greenhouse. Analysis of phosphoglucoisomerase and peroxidase isozymes, and Southern hybridization with a nuclear-specific pea 45 S ribosomal RNA gene confirmed somatic hybrid status. Cytology revealed that the four hybrid plants had chromosome numbers of 45, 60, 42 and 57, respectively; they were all sterile.  相似文献   

9.
Summary Asymmetric somatic hybrids of Lycopersicon esculentum and Lycopersicon peruvianum were obtained by fusion of leaf protoplasts from both species after irradiation of protoplasts or leaf tissue of L. peruvianum with 50, 300, or 1,000 Gy of gamma-rays. These radiation doses were sufficient to abolish the growth of the L. peruvianum protoplasts. The hybrids were selected for their ability to regenerate plants; this regeneration capacity derived from L. peruvianum. All asymmetric hybrid plants were aneuploid. The ploidy level, the morphology, and the regeneration rate were analyzed in relation to the radiation dose applied to L. peruvianum. After a low dose (50 Gy), most hybrids had near-triploid chromosome numbers, whereas after a high dose (300 or 1,000 Gy), most hybrids had near-pentaploid numbers. The morphology of the asymmetric hybrids was intermediate between that of L. esculentum and symmetric somatic hybrids of both species (obtained without irradiation treatment), and approached the morphology of L. esculentum to a greater extent after a high dose of irradiation. The asymmetric hybrids regenerated more slowly than the symmetric hybrids and regeneration proceeded more slowly after a high dose than after a low dose of irradiation. The high-dose hybrids also grew more slowly, flowered less, and set fruits less than the low-dose hybrids. No seeds could be obtained from any asymmetric hybrid.  相似文献   

10.
利用重复序列探针染色体荧光原位杂交(FISH)和基因组原位杂交(GISH)技术,对采自青海高原披碱草属种间天然杂种进行细胞学鉴定,同时结合物种分布及形态学特征,共揭示6种不同天然杂种的类型。第一类为垂穗披碱草(Elymus nutans Griseb.)和鹅观草属(Roegneria C.Koch)物种间的天然杂种,染色体数为35,染色体组成为StStYYH;第二类为垂穗披碱草和达乌力披碱草种(Elymus dahuricus Turcz.ex Griseb.)间杂种,染色体数为42,染色体组成为StStHHYY;第三类为达乌力披碱草和老芒麦(Elymus sibiricus L.)种间杂种,染色体数为35,染色体组成为StStHHY;第四类为垂穗披碱草和糙毛以礼草(Kengilia hirsuta Keng)种间杂种,染色体数为42,染色体组成为StStYYHP;第五类为垂穗披碱草和大颖草(Kengilia grandiglumis Keng)种间杂种,染色体数为42,染色体组成为StStYYHP;第六类为糙毛以礼草和赖草(Leymus secalinus(Georgi) Tzvel.)种间杂种,染色体数为35,染色体组成为StYPNsXm。研究结果为进一步研究披碱草属种间杂交渐渗提供了重要参考资料;同时鉴定出的天然杂种可以作为潜在的种质资源在牧草或生态草育种中加以利用。  相似文献   

11.
Deng J  Cui H  Zhi D  Zhou C  Xia G 《Plant cell reports》2007,26(8):1233-1241
Callus-derived protoplasts of common wheat (Triticum aestivum L. cv. Hesheng 3) irradiated with ultraviolet light were fused by using the PEG method with cell suspension-derived protoplasts of Arabidopsis thaliana. Regenerated calli and green plants resembling that of wheat were obtained. The hybrid nature of putative calli and plants were confirmed by isozyme, random amplified polymorphic DNA and genomic in situ hybridization (GISH) analyses. GISH results indicated that 1∼3 small chromosome fragments of A. thaliana were found introgression into the terminals of wheat chromosomes, forming highly asymmetric hybrids. Cytoplasmic genome tests did not show any cytoplasmic genetic materials from A. thaliana. However, variations from the normal wheat cytoplasmic genome were found, indicating recombination or rearrangement occurred during the process of somatic hybridization. The chromosome elimination in the asymmetric somatic hybridization of remote phylogenetic relationship was discussed. A miniature inverted-repeat transposable element related sequence was found by chance in the hybrids which might accompany and impact the process of somatic hybridization. Jingyao Deng and Haifeng Cui provided same contribution to this work.  相似文献   

12.
Somatic hybrid plants were produced by fusion of protoplasts from cell cultures of the Nicotiana tabacum L. sulfur mutant Su/Su and from leaf mesophyll of Nicotiana glauca Graham. After fusion the N. glauca protoplasts failed to survive under the selected culture condition. From the hybrid cells light green shoots were produced. The hybrid plants exhibited intermediate characters between parental species with respect to leaf morphology, trichome density, floral structure and flower color. The chromosome number of 25 hybrid plants was 2n = 72 and both N. glauca and N. tabacum chromosomes were identified in the hybrids. Results of isoenzyme analysis showed bands of both parents and a specific (hybrid) band for aspartate amino-transferase. Small subunit fraction-1-protein of somatic hybrids also consisted of the sum of N. glauca and N. tabacum bands. Leaf spot formation associated with the Su locus of N. tabacum was observed in somatic hybrids.  相似文献   

13.
Summary The fusion of gametic protoplasts with somatic protoplasts giving rise to gametosomatic hybrid plants was investigated. Gametosomatic hybrid plants were regenerated following the fusion of nitrate reductase deficient (Nr) Nicotiana tabacum Nia-130 leaf mesophyll protoplasts with N. glutinosa tetrad protoplasts. The resulting plants were confirmed as hybrids, based on leaf and floral morphology, chromosome number, leaf esterase and leaf callus peroxidase zymograms and Fraction-1-protein analysis. The five gametosomatic hybrid plants had the expected pentaploid, but functionally triploid chromosome number of 3n=5x=60. The relevance of triploid gametosomatic hybrids in facilitating limited gene transfer, is discussed. The utilisation of tetrads as a generally available source of haploid protoplasts for fusion studies is proposed.  相似文献   

14.
Summary A series of fusion experiments were performed between protoplasts of a cytoplasmic albino mutant of tomato, Lycopersicon esculentum (ALRC), and gamma-irradiated protoplasts of L. hirsutum and the Solanum species S. commersonii, S. etuberosum and S. nigrum. These species were chosen for their different phylogenetic relationships to tomato. In all fusion combinations except from those between ALRC and S. nigrum, green calli were selected as putative fusion products and shoots regenerated from them. They were subsequently analyzed for their morphology, nuclear DNA composition and chloroplast DNA origin. The hybrids obtained between ALRC and L. hirsutum contained the chloroplasts of L. hirsutum and had the flower and leaf morphology of L. esculentum. After Southern blot analysis, using 13 restriction fragment length polymorphisms (RFLPs) randomly distributed over all chromosomes, all hybrids showed L. esculentum hybridization patterns. No chromosomes of L. hirsutum were found. These results indicate that these hybrids were true cybrids.The putative asymmetric hybrids, obtained with S. commersonii and S. etuberosum, showed phenotypic traits of both parents. After hybridization with species-specific repetitive nuclear DNA probes it was found that nuclear material of both parents was present in all plants. In the case of S. nigrum, which combination has the greatest phylogenetic distance between the fusion parents, no hybrid plants could be obtained. The chloroplast DNA of all hybrid plants was of the donor type suggesting that chloroplast transfer by asymmetric protoplast fusion can overcome problems associated with large phylogenetic distances between parental plants.  相似文献   

15.
Summary Asymmetric somatic hybrids between Solanum tuberosum L. and S. brevidens Phil. have been obtained via the fusion of protoplasts from potato leaves and from cell suspension culture of S. brevidens. The wild Solanum species served as donor after irradiation of its protoplasts with a lethal X-ray dose (200 Gy). Selection of the putative hybrids was based on the kanamycin-resistance marker gene previously introduced into the genome of Solanum brevidens by Agrobacterium-mediated gene transfer. Thirteen out of the 45 selected clones exhibited reduced morphogenic potential. The morphological abnormalities of the regenerated plantlets were gradually eliminated during the extended in vitro culture period. Cytological investigations revealed that the number of chromosomes in the cultured S. brevidens cells used as protoplast source ranged between 28–40 instead of the basic 2n=24 value. There was a high degree of aneuploidy in all of the investigated hybrid clones, and at least 12 extra chromosomes were observed in addition to the potato chromosomes (2n=48). Interand intraclonal variation and segregation during vegetative propagation indicated the genetic instability of the hybrids, which can be ascribed to the pre-existing and X-ray irradiation-induced chromosomal abnormalities in the donor S. brevidens cells. The detection of centromeric chromosome fragments and long, poly-constrictional chromosomes in cytological preparations as well as non-parental bands in Southern hybridizations with restriction fragment length polymorphism (RFLP) markers revealed extensive chromosome rearrangements in most of the regenerated clones. On the basis of the limited number of RFLP probes used, preferential loss of S. brevidens specific markers with a non-random elimination pattern could be detected in hybrid regenerants.  相似文献   

16.
T Gavrilenko  J Larkka  E Pehu  V M Rokka 《Génome》2002,45(2):442-449
GISH (genomic in situ hybridization) was applied for the analysis of mitotic chromosome constitutions of somatic hybrids and their derivatives between dihaploid clones of cultivated potato (Solanum tuberosum L.) (2n = 2x = 24, AA genome) and the diploid, non-tuberous, wild species Solanum brevidens Phil. (2n = 2x = 24, EE genome). Of the primary somatic hybrids, both tetraploid (2n = 4x) and hexaploid (2n = 6x) plants were found with the genomic constitutions of AAEE and AAEEEE, respectively. Androgenic haploids (somatohaploids) derived from the tetraploid somatic hybrids had the genomic constitutions of AE (2n = 2x = 24) and haploids originating from the hexaploid hybrids were triploid AEE (2n = 3x = 33 and 2n = 3x = 36). As a result of subsequent somatic hybridization from a fusion between dihaploid S. tuberosum (2n = 2x = 24, genome AA) and a triploid somatohaploid (2n = 3x = 33, genome AEE), second-generation somatic hybrids were obtained. These somatic hybrids were pentaploids (2n = 5x, genome AAAEE), but had variable chromosome numbers. GISH analysis revealed that both primary and second-generation somatic hybrids had lost more chromosomes of S. brevidens than of S. tuberosum.  相似文献   

17.
Borgato L  Conicella C  Pisani F  Furini A 《Planta》2007,226(4):961-969
In crop plants the shift from being annuals to perennials may allow future agricultural systems requiring less energy inputs. The practicability of this was tested for Solanum melongena. Leaf protoplasts of S. melongena (2n = 2x = 24) and one of the related arborescent species Solanum marginatum (2n = 2x = 24) were electrofused and fertile somatic hybrids with arborescent habit regenerated. The magnetic cell sorter (MACS) technique was used for the selection of heterokaryons. The hybrid nature of 18 regenerated plants was assessed on the banding patterns generated by inter-simple sequence repeat PCR. When taken to maturity in the greenhouse, hybrids grew more vigorously compared to the parental species. Their morphological traits were intermediate between those of S. melongena and S. marginatum. Hybrids flowered and produced an average of 85% stainable viable pollen and fertile fruits. The somatic hybrids were maintained in the greenhouse for more than 3 years and continued to produce flowers developing into two types of fruits with plentiful seeds. Fruits were either striated green containing non-germinable seeds or yellow with fully germinable seeds. Their S1 progenies showed common features with S0 hybrids, including fertility and arborescent habit. Cytologically, somatic hybrids exhibited the expected chromosome number of 2n = 4x = 48, while chromosome pairing during microsporogenesis was associated with a low frequency of intergenomic pairing. It is concluded that an arborescent perennial species has been obtained by somatic hybridization. The usefulness of this species per se or in eggplant breeding will depend not only on the transmission of the arborescent habit to cultivated eggplant varieties, but also on the variability that should be created from backcrossing the S. melongena + S. marginatum hybrids to S. melongena.  相似文献   

18.
BACKGROUND AND AIMS: Hylocereus and Selenicereus are native to tropical and sub-tropical America. Based on its taxonomic status and crossability relations it was postulated that H. megalanthus (syn. S. megalanthus) is an allotetraploid (2n = 4x = 44) derived from natural hybridization between two closely related diploid taxa. The present work aimed at elucidating the genetic relationships between species of the two genera. METHODS: Crosses were performed and the putative hybrids were analysed by chromosome counts and morphological traits. The ploidy level of hybrids was confirmed by fluorescent in situ hybridization (FISH) of rDNA sites. Genomic in situ hybridization (GISH) was used in an attempt to identify the putative diploid genome donors of H. megalanthus and an artificial interploid hybrid. KEY RESULTS: Reciprocal crosses among four diploid Hylocereus species (H. costaricensis, H. monacanthus (syn. H. polyrhizus), H. undatus and Hylocereus sp.) yielded viable diploid hybrids, with regular chromosome pairing. Reciprocal crosses between these Hylocereus spp. and H. megalanthus yielded viable triploid, pentaploid, hexaploid and aneuploid hybrids. Morphological and phenological traits confirm the hybrid origin. In situ detection of rDNA sites was in accord with the ploidy status of the species and hybrid studied. GISH results indicated that overall sequence composition of H. megalanthus is similar to that of H. ocamponis and S. grandiflorus. High sequence similarity was also found between the parental genomes of H. monacanthus and H. megalanthus in one triploid hybrid. CONCLUSIONS: The ease of obtaining partially fertile F1 hybrids and the relative sequence similarity (in GISH study) suggest close genetic relationships among the taxa analysed.  相似文献   

19.
Summary Intergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.  相似文献   

20.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号