首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Randomized Aldactone Evaluation Study (RALES) demonstrated a substantial clinical benefit to blocking the effects of aldosterone (Aldo) in patients with heart failure. We recently demonstrated that the enhanced renal conservation of sodium and water in rats with heart failure can be reduced by blocking the central nervous system effects of Aldo with the mineralocorticoid receptor (MR) antagonist spironolactone (SL). Preliminary data from our laboratory suggested that central MR might contribute to another peripheral mechanism in heart failure, the release of proinflammatory cytokines. In the present study, SL (100 ng/h for 21 days) or ethanol vehicle (Veh) was administered via the 3(rd) cerebral ventricle to one group of rats after coronary ligation (CL) or sham CL (Sham) to induce congestive heart failure (CHF). In Veh-treated CHF rats, tumor necrosis factor-alpha (TNF-alpha) levels increased during day 1 and continued to increase throughout the 3-wk observation period. In CHF rats treated with SL, started 24 h after CL, TNF-alpha levels rose initially but retuned to control levels by day 5 after CL and remained low throughout the study. These findings suggest that activation of MR in the central nervous system plays a critical role in regulating TNF-alpha release in heart failure rats. Thus some of the beneficial effect of blocking MR in heart failure could be due at least in part to a reduction in TNF-alpha production.  相似文献   

2.
The expression of proinflammatory cytokines increases in the hypothalamus of rats with heart failure (HF). The pathophysiological significance of this observation is unknown. We hypothesized that hypothalamic proinflammatory cytokines upregulate the activity of central neural systems that contribute to increased sympathetic nerve activity in HF, specifically, the brain renin-angiotensin system (RAS) and the hypothalamic-pituitary-adrenal (HPA) axis. Rats with HF induced by coronary ligation and sham-operated controls (SHAM) were treated for 4 wk with a continuous intracerebroventricular infusion of the cytokine synthesis inhibitor pentoxifylline (PTX, 10 microg/h) or artificial cerebrospinal fluid (VEH). In VEH-treated HF rats, compared with VEH-treated SHAM rats, the hypothalamic expression of proinflammatory cytokines was increased, along with key components of the brain RAS (renin, angiotensin-converting enzyme, angiotensin type 1 receptor) and corticotropin-releasing hormone, the central indicator of HPA axis activation, in the paraventricular nucleus (PVN) of the hypothalamus. The expression of other inflammatory/excitatory mediators (superoxide, prostaglandin E(2)) was also increased, along with evidence of chronic neuronal excitation in PVN. VEH-treated HF rats had higher plasma levels of norepinephrine, ANG II, interleukin (IL)-1beta, and adrenocorticotropic hormone, increased left ventricular end-diastolic pressure, and increased wet lung-to-body weight ratio. With the exception of plasma IL-1beta, an indicator of peripheral proinflammatory cytokine activity, all measures of neurohumoral excitation were significantly lower in HF rats treated with intracerebroventricular PTX. These findings suggest that the increase in brain proinflammatory cytokines observed in rats with ischemia-induced HF is functionally significant, contributing to neurohumoral excitation by activating brain RAS and the HPA axis.  相似文献   

3.
Functional studies indicate that the sympathoexcitatory and pressor responses to an increase in cerebrospinal fluid (CSF) [Na+] by central infusion of Na+-rich artificial cerebrospinal fluid (aCSF) in Wistar rats are mediated in the brain by mineralocorticoid receptor (MR) activation, ouabain-like compounds (OLC), and AT1-receptor stimulation. In the present study, we examined whether increasing CSF [Na+] by intracerebroventricular infusion of Na+-rich aCSF activates MR and thereby increases OLC and components of the renin-angiotensin system in the brain. Male Wistar rats received via osmotic minipump an intracerebroventricular infusion of aCSF or Na+-rich aCSF, in some groups combined with intracerebroventricular infusion of spironolactone (100 ng/h), antibody Fab fragments (to bind OLC), or as control gamma-globulins. After 2 wk of infusion, resting blood pressure and heart rate were recorded, OLC and aldosterone content in the hypothalamus were assessed by a specific ELISA or radioimmunoassay, and angiotensin-converting enzyme (ACE) and AT1-receptor binding densities in various brain nuclei were measured by autoradiography using 125I-labeled 351 A and 125I-labeled ANG II. When compared with intracerebroventricular aCSF, intracerebroventricular Na+-rich aCSF increased CSF [Na+] by approximately 5 mmol/l, mean arterial pressure by approximately 20 mmHg, heart rate by approximately 65 beats/min, and hypothalamic content of OLC by 50% and of aldosterone by 33%. Intracerebroventricular spironolactone did not affect CSF [Na+] but blocked the Na+-rich aCSF-induced increases in blood pressure and heart rate and OLC content. Intracerebroventricular Na+-rich aCSF increased ACE and AT1-receptor-binding densities in several brain nuclei, and Fab fragments blocked these increases. These data indicate that in Wistar rats, a chronic increase in CSF [Na+] may increase hypothalamic aldosterone and activate CNS pathways involving MR, and OLC, leading to increases in AT1-receptor and ACE densities in brain areas involved in cardiovascular regulation and hypertension.  相似文献   

4.
In Wistar rats, increasing cerebrospinal fluid (CSF) Na+ concentration ([Na+]) by intracerebroventricular (ICV) infusion of hypertonic saline causes sympathetic hyperactivity and hypertension that can be prevented by blockade of brain mineralocorticoid receptors (MR). To assess the role of aldosterone produced locally in the brain in the activation of MR in the central nervous system (CNS), Wistar rats were infused ICV with artificial CSF (aCSF), Na+ -rich (800 mmol/l) aCSF, aCSF plus the aldosterone synthase inhibitor FAD286 (100 microg x kg(-1) x day(-1)), or Na+ -rich aCSF plus FAD286. After 2 wk of infusion, rats treated with Na+ -rich aCSF exhibited significant increases in aldosterone and corticosterone content in the hypothalamus but not in the hippocampus, as well as increases in resting blood pressure (BP) and sympathoexcitatory responses to air stress, and impairment of arterial baroreflex function. Concomitant ICV infusion of FAD286 prevented the Na+ -induced increase in hypothalamic aldosterone but not corticosterone and prevented most of the increases in resting BP and sympathoexcitatory and pressor responses to air stress and the baroreflex impairment. FAD286 had no effects in rats infused with ICV aCSF. In another set of rats, 24-h BP and heart rate were recorded via telemetry before and during a 14-day ICV infusion of Na+ -rich aCSF with or without FAD286. Na+ -rich aCSF without FAD286 caused sustained increases ( approximately 10 mmHg) in resting mean arterial pressure that were absent in the rats treated with FAD286. These data suggest that in Wistar rats, an increase in CSF [Na+] may increase the biosynthesis of corticosterone and aldosterone in the hypothalamus, and mainly aldosterone activates MR in the CNS leading to sympathetic hyperactivity and hypertension.  相似文献   

5.
We examined the effect of angiotensin I (AI), without the effect of angiotensin II (AII) converted from AI, on the weight of the adrenal glands, adrenal corticosterone (B) and adrenal aldosterone under conditions where the renin-angiotensin system was suppressed, since a reduction in the size of the adrenal glands is often observed in DOCA/salt hypertensive rats. Sixty male Wistar rats fed on a 1% NaCl solution were divided into 6 groups as follows: a) Salt group: received sesame oil and vehicle, b) Salt + C group: received sesame oil and MK422 (0.14 mg/day), an angiotensin converting enzyme inhibitor (CEI), c) DOCA group: received DOCA (30 mg/week) and vehicle, d) DOCA + A group: received DOCA and AI (0.5 mg/kg/day), e) DOCA + A + C group: received DOCA and AI with MK422, and f) DOCA + C group: received DOCA and MK422. After 4 weeks, the rats were sacrificed to sample their blood and remove their adrenal glands. There was no significant difference in adrenal B among the groups apart from the DOCA + C group. Adrenal aldosterone was lower in the groups of DOCA/salt hypertensive rats than in the Salt group and Salt + C group. Furthermore, the DOCA + A + C group and DOCA + C group had lower adrenal aldosterone levels than the DOCA group and DOCA + A group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
S Li  P Wu  S Zhong  Z Guo  W Lai  Y Zhang  X Liang  J Xiu  J Li  Y Liu 《Hormone research》2001,55(6):293-297
BACKGROUND: Plasma aldosterone escape is found during long-term angiotensin-converting enzyme inhibitor therapy. Evidence for aldosterone production in cardiovascular tissues raised the question of whether or not aldosterone escape occurs in these tissues. METHOD: Spontaneously hypertensive rats were treated with enalapril (20 mg/kg/day) and losartan (50 mg/kg/day) for 20 weeks; untreated spontaneously hypertensive and Wistar rats were used as positive and normal controls, respectively. Ex vivo mesenteric artery and heart perfusion, high-performance liquid chromatography, and radioimmunoassay for aldosterone were performed. RESULTS: The results showed that enalapril failed to significantly inhibit aldosterone production in mesenteric artery, myocardium and plasma. Losartan significantly inhibited aldosterone production to that of Wistar rats in the mesenteric artery, myocardium and plasma. CONCLUSION: This study provides the first evidence that long-term angiotensin-converting enzyme inhibition therapy induces aldosterone escape in hypertensive cardiovascular tissues, and angiotensin II subtype 1 receptor antagonist does not induce aldosterone escape in mesenteric artery, myocardium and plasma of spontaneously hypertensive rats.  相似文献   

7.
Mineralocorticoid receptors (MR) have equal affinity for the mineralocorticoid aldosterone, and the physiological glucocorticoids cortisol and corticosterone. In epithelial tissues in vivo, MR are protected against glucocorticoid occupancy by the enzyme 11β-hydroxysteroid dehydrogenase, allowing access by the lower circulating levels of the physiological mineralocorticoid aldosterone. In non-epithelial tissues, including the heart and most areas of the central nervous system, MR are not so protected, and their physiological ligand is cortisol/corticosterone. Intracerebroventricular infusion studies have shown that aldosterone occupancy of such unprotected circumventricular MR is necessary for mineralocorticoid hypertension, and the hypertensinogenic effects of peripherally infused aldosterone can be blocked by intracerebroventricular infusion of the MR antagonist RU28318. Prolonged (8 weeks) administration of mineralocorticoids to salt-loaded rats has been shown to be followed by hypertension, cardiac hypertrophy and cardiac fibrosis. Whether the hypertrophy and fibrosis reflect primary effects of aldosterone via cardiac MR, or effects secondary to occupancy of protected, epithelial MR, remains to be determined, as does the mechanism of action of salt loading in this model of mineralocorticoid hypertension.  相似文献   

8.
Liang YH  Wang JM  Zhou Y  Jiang XJ  Jiang H  Huang CX 《Life sciences》2004,75(15):1871-1878
The additive effects of combined valsartan and spironolactone on plasma and cardiac aldosterone escape were evaluated in spontaneously hypertensive rats (SHRs). Twenty-four SHRs were treated with valsartan (30 mg/kg body weight per day), spironolactone (20 mg/kg body weight per day) and a combination of both for 4 months. Blood was collected and plasma aldosterone (PA) was estimated with radioimmunoassay (RIA). Ex vivo heart perfusion was performed, the ex vivo cardiac aldosterone (EXCA) was assessed by RIA after high-performance liquid chromatography separation. PA and EXCA were significantly decreased after one month but increased after 4 months in valsartan administration group. The combined valsartan and spironolactone therapy normalized cardiac aldosterone levels. This study provides the first evidence that the long-term treatment with Angiotensin II type 1 receptor antagonist (AT1A) induces local aldosterone escape in cardiovascular tissue, whereas the combined AT1A and spironolactone therapy inhibits the escape in hypertensive rats.  相似文献   

9.
In rats post-myocardial infarction (MI), sympathetic hyperactivity can be prevented by blockade of brain mineralocorticoid receptors (MR). Stimulatory responses to central infusion of aldosterone can be blocked by benzamil and therefore appear to be mediated via Na+ channels, presumably epithelial Na+ channels (ENaC), in the brain. To evaluate this concept of endogenous mineralocorticoids in Wistar rats post-MI, we examined effects of blockade of MR and Na+ channels in the brain. At 3 days after coronary artery ligation, intracerebroventricular infusions were started with spironolactone (400 ng.kg(-1).h(-1)) or its vehicle, or with benzamil (4 microg.kg(-1).h(-1)) or its vehicle, using osmotic minipumps. Rats with sham ligation served as control. After 4 wk, in conscious rats, mean arterial pressure, heart rate, and renal sympathetic nerve activity were recorded at rest and in response to air-jet stress, intracerebroventricular injection of the alpha2-adrenoceptor agonist guanabenz, and intravenous infusion of phenylephrine and nitroprusside for baroreflex function. MI size was similar among the four groups of rats (approximately 31%). In rats treated post-MI with vehicles, cardiac function was decreased, sympathetic reactivity was enhanced, and baroreflex function was impaired. Blockade of brain Na+ channels or brain MR similarly prevented sympathetic hyperactivity and impairment of baroreflex function and improved cardiac function. These findings suggest that in rats post-MI, increased binding of endogenous agonists to MR increases ENaC activity in the brain and thereby leads to sympathetic hyperactivity and progressive left ventricular dysfunction.  相似文献   

10.
Central nervous system (CNS) effects of mineralocorticoids participate in the development of salt-sensitive hypertension. In the brain, mineralocorticoids activate amiloride-sensitive sodium channels, and we hypothesized that this would lead to increased release of ouabainlike compounds (OLC) and thereby sympathetic hyperactivity and hypertension. In conscious Wistar rats, intracerebroventricular infusion of aldosterone at 300 or 900 ng/h in artificial cerebrospinal fluid (aCSF) with 0.145 M Na+ for 2 h did not change baseline mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), or heart rate (HR). Intracerebroventricular infusion of aCSF containing 0.16 M Na+ (versus 0.145 M Na+ in regular aCSF) did not change MAP or RSNA, but significant increases in MAP, RSNA, and HR were observed after intracerebroventricular infusion of aldosterone at 300 ng/h for 2 h. Intracerebroventricular infusion of aCSF containing 0.3 M Na+ increased MAP, RSNA, and HR significantly more after intracerebroventricular infusion of aldosterone versus vehicle. After intracerebroventricular infusion of aldosterone, the MAP, RSNA, and HR responses to intracerebroventricular infusion of aCSF containing 0.16 M Na+ were blocked by blockade of brain OLC with intracerebroventricular infusion of Fab fragments or of brain sodium channels with intracerebroventricular benzamil. Chronic intracerebroventricular infusion of aldosterone at 25 ng/h in aCSF with 0.15 M Na+ for 2 wk increased MAP by 15-20 mmHg and increased hypothalamic OLC by 30% and pituitary OLC by 60%. Benzamil blocked all these responses to aldosterone. These findings indicate that in the brain, mineralocorticoids activate brain sodium channels, with small increases in CSF Na+ leading to increases in brain OLC, sympathetic outflow, and blood pressure.  相似文献   

11.
The inflammatory milieu of acute myocardial infarction (MI) is theoretically conducive to enhanced cytokine synthesis within the brain. We tested the hypothesis that synthesis of tumor necrosis factor-alpha (TNF-alpha), an indicator of proinflammatory cytokine activity, increases in brain after MI. MI was induced in rats by ligating the left anterior descending coronary artery and confirmed by echocardiography. Plasma and tissue levels of TNF-alpha were measured using ELISA; TNF-alpha mRNA was measured with real-time PCR. Heart, brain, and plasma samples were obtained 0.5, 1, 4, or 24 h or 4 wk after MI. TNF-alpha synthesis increased in the brain, heart, and plasma within minutes to hours after MI and was sustained over the interval tested. Among the brain tissues examined, TNF-alpha increased selectively in hypothalamus. Chronic treatment with pentoxifylline prevented the increases in TNF-alpha in brain, heart, and plasma measured 4 wk after MI. MI-induced cytokine synthesis in the hypothalamus and its prevention by pentoxifylline have important implications in the context of the development of heart failure after MI.  相似文献   

12.
DOCA (0.3 mg/kg i.p.) inhibited the shock-induced aggression in male rats. This behavioural reaction was also inhibited by activation of brain beta-adrenergic and nicotinic receptors. The inhibitory hormone effect was potentiated to a considerable extent (p less than 0.05-0.001) by central beta-adrenergic stimulation but was blocked by beta-antagonist administration. However, it was independent of facilitatory and inhibitory actions on the brain nicotinic receptors. It is concluded that the DOCA inhibitory effect on the shock-induced defensive fighting involved the facilitation of the brain beta-adrenergic receptor activation.  相似文献   

13.
The number of patients with adrenal aldosterone-producing adenomas (APAs) has gradually increased. However, even after adenoma resection, some patients still suffer from high systolic blood pressure (SBP), which is possibly due to great arterial remodeling. Moreover, mineralocorticoid receptors (MRs) were found to be expressed in vascular smooth muscle cells (VSMCs). This study aims to determine whether MR antagonism protects the aorta from aldosterone-induced aortic remolding. Male rats were subcutaneously implanted with an osmotic minipumps and randomly divided into four groups: control; aldosterone (1 μg/h); aldosterone plus a specific MR antagonist, eplerenone (100 mg/kg/day); and aldosterone plus a vasodilator, hydralazine (25 mg/kg/day). After 8 weeks of infusion, aortic smooth muscle cell proliferation and collagen deposition, as well as the MDM2 and TGF-β1 expression levels in the aorta, were examined. Model rats with APAs were successfully constructed. Compared with the control rats, the model rats exhibited (1) marked SBP elevation, (2) no significant alteration in aortic morphology, (3) increased VSMC proliferation and MDM2 expression in the aorta, and (4) enhanced total collagen and collagen III depositions in the aorta, accompanied with up-regulated expression of TGF-β1. These effects were significantly inhibited by co-administration with eplerenone but not with hydralazine. These findings suggested that specific MR antagonism protects the aorta from aldosterone-induced VSMC proliferation and collagen deposition.  相似文献   

14.
The matrix metalloproteinases (MMPs) and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs) play a key role in extracellular matrix maintenance and are altered in the failing heart, both in experimental models and in chronic end-stage heart failure in humans. As the common diagnostic markers of heart failure, atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) primarily reflect increased pressure loading, determination of soluble, heart-derived MMPs and TIMPs in plasma, as well as the determination of the emerging fibrosis marker osteopontin (OPN) might be valuable tools for detecting heart fibrosis. In this study the effect of spironolactone treatment on plasma MMP-2, TIMP-1 and OPN levels was assessed in a heart failure animal model. Unilaterally nephrectomized Sprague Dawley rats received subcutaneous injection of 100 mg deoxycorticosterone acetate (DOCA) once a week and 1% (w/v) NaCl in drinking water. Blood pressure was monitored weekly and blood samples were collected after 1, 2 and 4 weeks. After 6 weeks, left ventricular contractility (LVC) and heart weight-to-body weight ratio (HW/BW) were assessed. DOCA treatment increased plasma MMP-2, TIMP-1 and OPN concentrations. Alterations of plasma marker levels were correlated with changes of HW/BW and paralleled impaired LVC. Furthermore, beneficial effects of spironolactone treatment were observed. In DOCA-salt hypertensive rats, plasma concentrations of MMP-2, TIMP-1 and OPN reflected heart failure associated with haemodynamic, functional and morphological changes. Based on these findings, it appears reasonable to use plasma markers of fibrosis to monitor the development of heart failure.  相似文献   

15.
In DOCA-salt rats, the time course of the synergistic interaction between osmolality and DOCA to produce hypertension is unknown. Therefore, in rats 2 wk after implantation of subcutaneous silicone pellets containing DOCA (65 mg) or no drug (sham), we determined blood pressure (BP) and heart rate (HR) responses, using telemetric pressure transducers, during 2 wk of excess salt ingestion (1% NaCl in drinking water). BP was unaltered in sham rats after increased salt, but in DOCA rats BP increased within 4 h. The initial hypertension of 30-35 mmHg stabilized within 2 days, followed approximately 5 days later by a further increment of approximately 30 mmHg. HR first decreased during the dark phase; the second phase was linked to an abrupt increase in HR and BP variability and decreased HR variability. Pressor responses to acute intravenous hypertonic saline infusion were doubled in DOCA-treated rats via vasopressin and nonvasopressin mechanisms. Only in DOCA-treated rats, portal vein hypertonic saline infusion increased BP, which was prevented by V(1) vasopressin blockade. After 2 wk of DOCA-salt, oral ingestion of water rapidly decreased BP. Intraportal infusion of water did not lower BP in DOCA-salt rats, suggesting that hepatic osmoreceptors were not involved. In summary, the hypertension of DOCA-treated rats consuming excess salt exhibits multiple phases and can be rapidly reversed. Hypertonicity-induced vasopressin and nonvasopressin pressor mechanisms that are augmented by DOCA, and hepatic osmoreceptors may contribute to the initial developmental phase. With time, combined DOCA-salt induces marked changes in the regulation of the autonomic nervous system, which may favor hypertension development.  相似文献   

16.
Our goal was to develop a model for the study of maternal adrenal gland regulation and the effects of maternal cortisol secretion on fetal homeostasis. At about 108 days of gestation, before the time of rapid fetal growth or fetal adrenocortical maturation, ewes, under halothane anesthesia with controlled ventilation and positioned in sternal recumbency, were adrenalectomized. Ewes were treated with aldosterone by intravenous infusion (3 micrograms/kg of body weight per day) to induce normal late-gestation aldosterone concentration. Ewes were also treated with cortisol; for 2 postoperative days, this infusion (1 to 2 micrograms/kg per min) induced plasma concentration similar to that associated with stress. Thereafter, the dosage of cortisol was reduced to induce plasma values similar to normal late-gestation cortisol concentration in ewes (1 mg/kg per day), or to values in nonpregnant ewes (0.6 mg/kg per day). Administration of cortisol and aldosterone was required to prevent electrolyte imbalance and signs of hypoadrenocorticism. With steroid replacement, plasma protein, electrolyte, and glucose concentrations in adrenalectomized ewes were not different from those in sham-operated pregnant ewes. Of 11 adrenalectomized ewes, one died as a result of failure of the infusion pump, and one died as a result of inappropriate treatment for hypoglycemia. Of the remaining ewes, two aborted fetuses, three ewes each delivered one live and one dead fetus, two delivered live singleton fetuses, and two delivered twins. Therefore, this model of relative hypoadrenocorticism in pregnancy is feasible and practical for studying the influence of maternal cortisol concentration on maternal and fetal homeostasis.  相似文献   

17.
Vascular inflammation was examined as a potential mechanism of aldosterone-mediated myocardial injury in uninephrectomized rats receiving 1% NaCl-0.3% KCl to drink for 1, 2, or 4 wk and 1) vehicle, 2) aldosterone infusion (0.75 microg/h), or 3) aldosterone infusion (0.75 microg/h) plus the selective aldosterone blocker eplerenone (100 mg. kg(-1). day(-1)). Aldosterone induced severe hypertension at 4 wk [systolic blood pressure (SBP), 210 +/- 3 mmHg vs. vehicle, 131 +/- 2 mmHg, P < 0.001], which was partially attenuated by eplerenone (SBP, 180 +/- 7 mmHg; P < 0.001 vs. aldosterone alone and vehicle). No significant increases in myocardial interstitial collagen fraction or hydroxyproline concentration were detected throughout the study. However, histopathological analysis of the heart revealed severe coronary inflammatory lesions, which were characterized by monocyte/macrophage infiltration and resulted in focal ischemic and necrotic changes. The histological evidence of coronary lesions was preceded by and associated with the elevation of cyclooxygenase-2 (up to approximately 4-fold), macrophage chemoattractant protein-1 (up to approximately 4-fold), and osteopontin (up to approximately 13-fold) mRNA expression. Eplerenone attenuated proinflammatory molecule expression in the rat heart and subsequent vascular and myocardial damage. Thus aldosterone and salt treatment in uninephrectomized rats led to severe hypertension and the development of a vascular inflammatory phenotype in the heart, which may represent one mechanism by which aldosterone contributes to myocardial disease.  相似文献   

18.

Background

The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the progression of heart failure (HF). We investigated whether cyclooxygenase-2 (COX-2) inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in rats with adriamycin-induced heart failure.

Methodology/Principal Finding

Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg). On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB) or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW) and lung to body weight (LW/BW) ratios, heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak systolic pressure (LVPSP) and maximum rate of change in left ventricular pressure (LV±dp/dtmax) were improved in HF+CLB rats. Angiotensin II (ANG II), norepinephrine (NE), COX-2 and glutamate (Glu) in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH) positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats.

Conclusions

These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure.  相似文献   

19.
Binding studies with the 1,4-dihydropyridine calcium channel antagonist [3H]nitrendipine [( 3H]NTD) were performed in uninephrectomized, deoxycorticosterone (DOCA)-NaCl hypertensive rats and vehicle treated normotensive control littermates. After 6 weeks of treatment, hypertensive (199 mmHg, systolic arterial pressure) DOCA rats showed significantly increased heart, left ventricle, and kidney weight in contrast to normotensive (135 mmHg) controls. [3H]NTD binding in the brainstem was significantly reduced (51 +/- 5 fmol/mg protein) in DOCA-NaCl rats, as compared to controls (116 +/- 24 fmol/mg protein). However, no significant differences were found in the [3H]NTD dissociation constants for DOCA-NaCl (0.43 +/- 0.03 nM) or control rats (0.62 +/- 0.06 nM). Cerebral cortical and left ventricular tissue showed no significant alterations in receptor binding density or affinity. Specific [3H]NTD binding was not significantly altered in other selected brain regions or the atria. These data suggest that alterations in the dihydropyridine binding sites associated with calcium channels in the brainstem may be involved in the etiology of DOCA-NaCl-induced hypertension.  相似文献   

20.
The concentration of catecholamines was determined in the brain, heart and adrenals in normovolaemic and hypovolaemic rats after reinfusion of the lost blood and after infusion of equivalent volumes of plasma substitutes (dextran and modified gelatins). After infusion of these preparations in normovolaemic rats noradrenaline concentration increased significantly in the myocardium. It was found also that restoration of normal blood volume by infusion of plasma substitutes prevented changes in catecholamine concentrations induced by hypovolaemia in the brain but not in the adrenals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号