首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
S100B is a Ca(2+)-modulated protein of the EF-hand type with both intracellular and extracellular roles. S100B, which is most abundant in the brain, has been shown to exert trophic and toxic effects on neurons depending on the concentration attained in the extracellular space. S100B is also found in normal serum, and its serum concentration increases in several nervous and nonnervous pathological conditions, suggesting that S100B-expressing cells outside the brain might release the protein and S100B might exert effects on nonnervous cells. We show here that at picomolar to nanomolar levels, S100B inhibits myogenic differentiation of rat L6 myoblasts via inactivation of p38 kinase with resulting decrease in the expression of the myogenic differentiation markers, myogenin, muscle creatine kinase, and myosin heavy chain, and reduction of myotube formation. Although myoblasts express the multiligand receptor RAGE, which has been shown to transduce S100B effects on neurons, S100B produces identical effects on myoblasts overexpressing either full-length RAGE or RAGE lacking the transducing domain. This suggests that S100B affects myoblasts by interacting with another receptor and that RAGE is not the only receptor for S100B. Our data suggest that S100B might participate in the regulation of muscle development and regeneration by inhibiting crucial steps of the myogenic program in a RAGE-independent manner.  相似文献   

5.
Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014).In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors.  相似文献   

6.
S100B is a soluble protein secreted by astrocytes that exerts pro-survival or pro-apoptotic effects depending on the concentration reached in the extracellular millieu. The S100B receptor termed RAGE (for receptor for advanced end glycation products) is highly expressed in the developing brain but is undetectable in normal adult brain. In this study, we show that RAGE expression is induced in cortical neurons of the ischemic penumbra. Increased RAGE expression was also observed in primary cortical neurons exposed to excitotoxic glutamate (EG). S100B exerts effects on survival pathways and neurite extension when the cortical neurons have been previously exposed to EG and these S100B effects were prevented by anti-RAGE blocking antibodies. Furthermore, nuclear factor kappa B (NF-κB) is activated by S100B in a dose- and RAGE-dependent manner and neuronal death induced by NF-κB inhibition was prevented by S100B that restored NF-κB activation levels. Together, these findings suggest that excitotoxic damage can induce RAGE expression in neurons from ischemic penumbra and demonstrate that cortical neurons respond to S100B through engagement of RAGE followed by activation of NF-κB signaling. In addition, basal NF-κB activity in neurons is crucial to modulate the extent of pro-survival or pro-death S100B effects.  相似文献   

7.
8.
Ndr is a nuclear serine/threonine protein kinase that belongs to a subfamily of kinases identified as being critical for the regulation of cell division and cell morphology. The regulatory mechanisms that control Ndr activity have not been characterized previously. In this paper, we present evidence that Ndr is regulated by EF-hand calcium-binding proteins of the S100 family, in response to changes in the intracellular calcium concentration. In vitro, S100B binds directly to and activates Ndr in a Ca2+-dependent manner. Moreover, Ndr is recovered from cell lysates in anti-S100B immunoprecipitates. The region of Ndr responsible for interaction with Ca2+/S100B is a basic/hydrophobic motif within the N-terminal regulatory domain of Ndr, and activation of Ndr by Ca2+/S100B is inhibited by a synthetic peptide derived from this region. In cultured cells, Ndr is rapidly activated following treatment with Ca2+ ionophore, and this activation is dependent upon the identified Ca2+/S100B-binding domain. Finally, Ndr activity is inhibited by W-7 in melanoma cells overexpressing S100B, but is unaffected by W-7 in melanoma cells that lack S100B. These results suggest that Ndr is regulated at least in part by changes in the intracellular calcium concentration, through binding of S100 proteins to its N-terminal regulatory domain.  相似文献   

9.
Several members of the S100 family of Ca(2+) binding proteins are at present known to be secreted and to have extracellular activities. We have investigated the neurite inducing potential of extracellularly added S100A12. Human recombinant S100A12 was found to dramatically induce neuritogenesis of hippocampal cells isolated from 17 to 19 days old rat embryos. The response to S100A12 was dependent on the dose in a bell-shaped manner. A 10-fold increase in neurite outgrowth was observed upon treatment with S100A12 in concentrations between 0.1 and 2.0 microM already after 24 h. Exposure to S100A12 for only 15 min was enough to induce neuritogenesis when measured after 24 h, but to obtain a maximal response, S100A12 had to be present in the culture for at least 4 h. The response to S100A12 was abolished by inhibitors of phospholipase C (PLC), protein kinase C (PKC), Ca(2+) flux, Ca(2+)/calmodulin dependent kinase II (CaMKII) or mitogen-activated protein kinase kinase (MEK). Therefore, we suggest that extracellular S100A12 triggers intracellular signal transduction in neurons, involving the classical mitogen-activated protein (MAP) kinase pathway and a phospholipase C-generated second messenger pathway leading to an increase in intracellular Ca(2+) and activation of PKC, ultimately resulting in neuronal differentiation.  相似文献   

10.
In osteoarthritis (OA), low-grade joint inflammation promotes altered chondrocyte differentiation and cartilage catabolism. S100/calgranulins share conserved calcium-binding EF-hand domains, associate noncovalently as homodimers and heterodimers, and are secreted and bind receptor for advanced glycation end products (RAGE). Chondrocyte RAGE expression and S100A11 release are stimulated by IL-1beta in vitro and increase in OA cartilage in situ. Exogenous S100A11 stimulates chondrocyte hypertrophic differentiation. Moreover, S100A11 is covalently cross-linked by transamidation catalyzed by transglutaminase 2 (TG2), itself an inflammation-regulated and redox stress-inducible mediator of chondrocyte hypertrophic differentiation. In this study, we researched mouse femoral head articular cartilage explants and knee chondrocytes, and a soluble recombinant double point mutant (K3R/Q102N) of S100A11 TG2 transamidation substrate sites. Both TG2 and RAGE knockout cartilage explants retained IL-1beta responsiveness. The K3R/Q102N mutant of S100A11 retained the capacity to bind to RAGE and chondrocytes but lost the capacity to signal via the p38 MAPK pathway or induce chondrocyte hypertrophy and glycosaminoglycans release. S100A11 failed to induce hypertrophy, glycosaminoglycan release, and appearance of the aggrecanase neoepitope NITEGE in both RAGE and TG2 knockout cartilages. We conclude that transamidation by TG2 transforms S100A11 into a covalently bonded homodimer that acquires the capacity to signal through the p38 MAPK pathway, accelerate chondrocyte hypertrophy and matrix catabolism, and thereby couple inflammation with chondrocyte activation to potentially promote OA progression.  相似文献   

11.
12.
S100 proteins are EF-hand calcium-binding proteins with various intracellular functions including cell proliferation, differentiation, migration, and apoptosis. Some S100 proteins are also secreted and exert extracellular paracrine and autocrine functions. Experimental results suggest that the receptor for advanced glycation end products (RAGE) plays important roles in mediating S100 protein-induced cellular signaling. Here we compared the interaction of two S100 proteins, S100B and S100A6, with RAGE by in vitro assay and in culture of human SH-SY5Y neuroblastoma cells. Our in vitro binding data showed that S100B and S100A6, although structurally very similar, interact with different RAGE extracellular domains. Our cell assay data demonstrated that S100B and S100A6 differentially modulate cell survival. At micromolar concentration, S100B increased cellular proliferation, whereas at the same concentration, S100A6 triggered apoptosis. Although both S100 proteins induced the formation of reactive oxygen species, S100B recruited phosphatidylinositol 3-kinase/AKT and NF-kappaB, whereas S100A6 activated JNK. More importantly, we showed that S100B and S100A6 modulate cell survival in a RAGE-dependent manner; S100B specifically interacted with the RAGE V and C(1) domains and S100A6 specifically interacted with the C(1) and C(2) RAGE domains. Altogether these results highlight the complexity of S100/RAGE cellular signaling.  相似文献   

13.
Structural and functional insights into RAGE activation by multimeric S100B   总被引:3,自引:0,他引:3  
Nervous system development and plasticity require regulation of cell proliferation, survival, neurite outgrowth and synapse formation by specific extracellular factors. The EF-hand protein S100B is highly expressed in human brain. In the extracellular space, it promotes neurite extension and neuron survival via the receptor RAGE (receptor for advanced glycation end products). The X-ray structure of human Ca(2+)-loaded S100B was determined at 1.9 A resolution. The structure revealed an octameric architecture of four homodimeric units arranged as two tetramers in a tight array. The presence of multimeric forms in human brain extracts was confirmed by size-exclusion experiments. Recombinant tetrameric, hexameric and octameric S100B were purified from Escherichia coli and characterised. Binding studies show that tetrameric S100B binds RAGE with higher affinity than dimeric S100B. Analytical ultracentrifugation studies imply that S100B tetramer binds two RAGE molecules via the V-domain. In line with these experiments, S100B tetramer caused stronger activation of cell growth than S100B dimer and promoted cell survival. The structural and the binding data suggest that tetrameric S100B triggers RAGE activation by receptor dimerisation.  相似文献   

14.
S100 proteins, a multigenic family of calcium-binding proteins, have been linked to human pathologies in recent years. Deregulated expression of S100 proteins, including S100A8 and S100A9, was reported in association with neoplastic disorders. In a previous study, we identified enhanced expression of S100A8 and S100A9 in human prostate cancer. To investigate potential functional implications of S100A8 and S100A9 in prostate cancer, we examined the influence of over-expressed and of purified recombinant S100A8 and S100A9 proteins in different prostate epithelial cell lines. S100A8 and S100A9 were secreted by prostate cancer cells, a finding which prompted us to analyze a possible function as extracellular ligands. S100A8/A9 induced the activation of NF-kappaB and an increased phosphorylation of p38 and p44/42 MAP kinases. In addition, extracellular S100A8/A9 stimulated migration of benign prostatic cells in vitro. Furthermore, in immunofluorescence experiments, we found a strong speckled co-localization of intracellular S100A8/A9 with RAGE after stimulating cells with recombinant S100A8/A9 protein or by increasing cytosolic Ca2+ levels. In summary, our findings show that S100A8 and S100A9 are linked to the activation of important features of prostate cancer cells.  相似文献   

15.
Jin Q  Chen H  Luo A  Ding F  Liu Z 《PloS one》2011,6(4):e19375
S100A14 is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effects on different types of cells. However, exact extracellular roles of S100A14 have not been clarified yet. Here we investigated the effects of S100A14 on esophageal squamous cell carcinoma (ESCC) cell lines. Results demonstrated that low doses of extracellular S100A14 stimulate cell proliferation and promote survival in KYSE180 cells through activating ERK1/2 MAPK and NF-κB signaling pathways. Immunoprecipitation assay showed that S100A14 binds to receptor for advanced glycation end products (RAGE) in KYSE180 cells. Inhibition of RAGE signaling by different approaches including siRNA for RAGE, overexpression of a dominant-negative RAGE construct or a RAGE antagonist peptide (AmphP) significantly blocked S100A14-induced effects, suggesting that S100A14 acts via RAGE ligation. Furthermore, mutation of the N-EF hand of S100A14 (E39A, E45A) virtually reduced 10 μg/ml S100A14-induced cell proliferation and ERK1/2 activation. However, high dose (80 μg/ml) of S100A14 causes apoptosis via the mitochondrial pathway with activation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase. High dose S100A14 induces cell apoptosis is partially in a RAGE-dependent manner. This is the first study to demonstrate that S100A14 binds to RAGE and stimulates RAGE-dependent signaling cascades, promoting cell proliferation or triggering cell apoptosis at different doses.  相似文献   

16.
17.
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.  相似文献   

18.
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.  相似文献   

19.
Calgranulin C (S100A12) is a member of the S100 family of proteins that undergoes a conformational change upon calcium binding allowing them to interact with target molecules and initiate biological responses; one such target is the receptor for advanced glycation products (RAGE). The RAGE-calgranulin C interaction mediates a pro-inflammatory response to cellular stress and can contribute to the pathogenesis of inflammatory lesions. The soluble extracellular part of RAGE (sRAGE) was shown to decrease the inflammation response possibly by scavenging RAGE-activating ligands. Here, by using high resolution NMR spectroscopy, we identified the sRAGE-calgranulin C interaction surface. Ca2+ binding creates two symmetric hydrophobic surfaces on Ca2+-calgranulin C that allow calgranulin C to bind to the C-type immunoglobulin domain of RAGE. Apo-calgranulin C also binds to sRAGE using a completely different surface and with substantially lower affinity, thus underscoring the role of Ca2+ binding to S100 proteins as a molecular switch. By using native gel electrophoresis, chromatography, and fluorescence spectroscopy, we established that sRAGE forms tetramers that bind to hexamers of Ca2+-calgranulin C. This arrangement creates a large platform for effectively transmitting RAGE-dependent signals from extracellular S100 proteins to the cytoplasmic signaling complexes.  相似文献   

20.
Data concerning the pathophysiological role of the interaction of circulating S100 proteins, a multigenic family of Ca(2+)-modulated proteins, with the receptor for advanced glycation endproducts (RAGE) in cardiovascular diseases, inflammatory processes, and tumorigenesis in vivo are scarce. One reason is the shortage of suitable radiotracer methods. We report a novel methodology using recombinant human S100A1, S100B, and S100A12 as potential probes for molecular imaging of this interaction. Therefore, human S100 proteins were cloned as GST fusion proteins in the bacterial expression vector pGEX-6P-1 and expressed in E. coli strain BL21. Purified recombinant human S100 proteins were radiolabeled with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). The radiolabeled recombinant S100 proteins ((18)F-S100) were used in biodistribution experiments and small animal positron emission tomography (PET) studies in rats. The tissue-specific distribution of (18)F-S100 proteins in vivo correlated well with the anatomical localization of RAGE, e.g., in lungs and in the vascular system. These findings indicate circulating S100A1, S100B, and S100A12 proteins to be ligands for RAGE in rats in vivo. The approach allows the use of small animal PET and provides novel probes to delineate functional expression of RAGE under normal and pathophysiological conditions in rodent models of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号