首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface tyrosine kinase receptors are subject to a rapid activation by their ligand, which is followed by secondary regulatory processes. The IHE2 cell line is a unique model system to study the regulation of EGF binding to EGF receptors after activation of the EGF receptor kinase. IHE2 cells express both a chimeric insulin-EGF receptor kinase (IER) and a kinase-deficient EGF receptor (HER K721A). We have previously reported that IER is an insulin-responsive EGF receptor tyrosine kinase that activates one or several serine/threonine kinases, which in turn phosphorylate(s) the unoccupied HER K721A. In this article we show that insulin through IER activation induces a decrease in 125I-EGF binding to IHE2 cells. Scatchard analysis indicates that, as for TPA, the effect of insulin can be accounted for by a loss of the high affinity binding of EGF to HER K721A. Since this receptor transmodulation persists in protein kinase C downregulated IHE2 cells, it is likely to be due to a mechanism independent of protein kinase C activation. Using an in vitro system of 125I-EGF binding to transmodulated IHE2 membranes, we illustrate that the inhibition of EGF binding induced by IER activation is related to the phosphorylation state of HER K721A. Further, studies with phosphatase 2A, or at a temperature (4 degrees C) where only IER is functional, strongly suggest that the loss of high affinity EGF binding is related to the serine/threonine phosphorylation of HER K721A after IER activation. Our results provide evidence for a "homologous desensitization" of EGF receptor binding after activation of the EGF receptor kinase of the IER receptor.  相似文献   

2.
The binding of epidermal growth factor (EGF) to its cell surface receptor (EGF-R) results in a number of intracellular responses including the activation of the receptor intracellular tyrosine kinase. Receptor oligomerization induced by ligand binding has been suggested to play an important role in signal transduction. However, the mechanisms involved in oligomerization and signal transduction are poorly understood. We have produced and purified several milligrams of recombinant extracellular domain of the EGF receptor (EGF-Rx) using the baculovirus/insect cell expression system. The baculovirus-generated EGF-Rx is glycosylated, has had its signal peptide correctly cleaved, and exhibits a dissociation constant for EGF similar to that for solubilized full-length receptor, of about 100 nM. The binding of EGF to EGF-Rx leads to the formation of receptor dimers and higher oligomerization states which are irreversibly captured using the covalent cross-linking agent disuccinimidyl suberate. Interestingly, purified receptor monomers and dimers, stabilized by the cross-linker in the presence of EGF, exhibit increased binding affinity toward EGF as compared with receptor monomers which have not been exposed to EGF. It appears that the high affinity state of receptor can be maintained by the covalent cross-linking agent. These results indicate that in addition to ligand binding, the extracellular domain of EGF receptor possesses the inherent ability to undergo ligand-induced dimerization and that the low affinity state is converted to a high affinity state by EGF.  相似文献   

3.
Subcellular localization of the EGF receptor maturation process   总被引:2,自引:0,他引:2  
The glycosylation and the processing of the epidermal growth factor (EGF) receptor are suggested to play a crucial role(s) in the activation of ligand binding activity. To examine whether the receptor acquires EGF binding activity in the endoplasmic reticulum (ER) or in the Golgi complex, we carried out parallel kinetic analysis of the EGF binding activity and the intracellular transport of the newly synthesized receptor by immunoprecipitation with the anti-EGF receptor antibody B4G7 using the EGF receptor hyperproducing cell line NA. The kinetic analysis revealed that a receptor capable of binding EGF appeared after 30 to 60 min labeling with [35S]methionine. Pulse-chase experiments also indicated that the receptor capable of binding EGF appeared after a 30-min pulse with a 30-min chase. Subcellular fractionation analysis indicated that the newly synthesized receptor was present in the Golgi complex after labeling with [35S]methionine for 30 min. After a 30-min chase, the Mr 170K receptor appeared in the Golgi complex and plasma membrane. Thus, these results together indicated that after a 30-min pulse incubation a fraction of the EGF receptors have been transported from the ER to the Golgi complex; however, the receptor is unable to bind EGF. Although the EGF receptor appeared on the cell surface after a 30-min pulse with a 30-min chase, only half of the receptors are capable of binding EGF. Therefore, the EGF receptor acquires ligand binding activity at a late stage of the maturation process, most likely in the Golgi complex.  相似文献   

4.
Epidermal growth factor (EGF) stimulates EGF receptor synthesis   总被引:13,自引:0,他引:13  
Epidermal growth factor (EGF) binds to the extracellular domain of a specific 170,000-dalton transmembrane glycoprotein; this results in rapid removal of both ligand and receptor from the cell surface. In WB cells, a rat hepatic epithelial cell line, ligand-directed receptor internalization leads to receptor degradation. We tested whether the EGF receptor was replenished at a constitutive or enhanced rate following EGF binding by immunoprecipitating biosynthetically labeled EGF receptor from cells cultured with [35S]methionine. EGF stimulated receptor synthesis within 2 h in a dose-dependent manner; this was particularly evident when examining the nascent form of the receptor. To determine the site of EGF action, total WB cell RNA was transferred to nitrocellulose paper after electrophoresis and was hybridized to cDNA probes from both the external and cytoplasmic coding regions of the human EGF receptor. EGF increased receptor mRNA by 3-5-fold. Therefore, at least in some cells, the surface action of EGF that leads to EGF receptor degradation is counterbalanced by a positive effect on receptor synthesis.  相似文献   

5.
Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. We employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF(L47M). The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. Our experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.  相似文献   

6.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

7.
Epidermal growth factor (EGF) and homodimeric vascular endothelial growth factor (VEGF) bind to cell surface receptors. They are responsible for cell growth and angiogenesis, respectively. Docking of the individual proteins as monomeric units using ZDOCK 2.3.2 reveals a partial blocking of the receptor binding site of VEGF by EGF. The receptor binding site of EGF is not affected by VEGF. The calculated binding energy is found to be intermediate between the binding energies calculated for Alzheimer’s Aß42 and the barnase/barstar complex.  相似文献   

8.
Subpicomolar concentrations of human platelet-derived transforming growth factor beta (TGF-beta) inhibited growth factor-stimulated DNA synthesis in primary cultures of adult rat hepatocytes. This inhibition was not the result of changes in the size of intracellular pools of 3H-thymidine and was not dependent on the state of confluence of the cells. A 24-hr exposure to TGF-beta either before or after insulin/EGF stimulation was as inhibitory on DNA synthesis between 48 and 72 hr of culture as was TGF-beta present throughout 72 hr of culture. From 12 hr in culture to 24 hr, hepatocyte EGF binding sites dropped from about 230,000 to 85,000 per cell with no significant change in Kd, but with a loss in capacity for EGF-induced receptor down-regulation. Maximally inhibitory concentrations of TGF-beta did not compete with EGF for the EGF receptor, and a 4- to 24-hr exposure to TGF-beta did not alter subsequent EGF binding. Coincubation of hepatocytes with TGF-beta and EGF did not influence the 60% reduction in EGF binding sites produced by EGF alone. In addition, TGF-beta did not prevent EGF-induced autophosphorylation of the 170,000 dalton EGF receptor in membranes from whole liver. Our studies suggest that TGF-beta regulates hepatocyte growth independently of changes in EGF receptor number, ligand affinity, or postbinding autophosphorylation.  相似文献   

9.
Mayawala K  Vlachos DG  Edwards JS 《FEBS letters》2005,579(14):3043-3047
The mechanism responsible for the concave up nature of the Scatchard plot of epidermal growth factor (EGF) binding on EGF receptor (EGFR) has been a controversial issue for more than a decade. Past efforts to mechanistically simulate the concave up nature of the Scatchard plot of EGF binding have shown that negative cooperativity in EGF binding on an EGFR dimer or inclusion of some external site or binding event can describe this behavior. However, herein we show that heterogeneity in the density of EGFR due to localization in certain regions of the plasma membrane, which has been experimentally reported, can also lead to concave up shape of the Scatchard plot of the EGF binding on EGFR.  相似文献   

10.
Ligand binding to the membrane receptor for EGF induces its clustering and internalization. Both receptor and ligand are then degraded by lysosomal enzymes. A kinase defective point mutant (K721A) of EGF receptor undergoes internalization similarly to the wild-type receptor. However, while internalized EGF molecules bound to either the wild-type or mutant receptors are degraded, the K721A mutant receptor molecules recycle to the cell surface for reutilization. To investigate the mechanism of receptor trafficking, we have established transfected NIH-3T3 cells coexpressing the kinase-negative mutant (K721A) together with a mutant EGF receptor (CD63) with active kinase. CD63 was chosen because it behaves like wild-type EGF receptor with respect to biological responsiveness and cellular routing but afforded immunological distinction between kinase active and inactive mutants. Although expressed in the same cells, the two receptor mutants followed their separate endocytic itineraries. Like wild-type receptor, the CD63 mutant was downregulated and degraded in response to EFG while the kinase-negative mutant K721A returned to the cell surface for reutilization. Intracellular trafficking of EGF receptor must be determined by a sorting mechanism that specifically recognizes EGF receptor molecules according to their intrinsic kinase activity.  相似文献   

11.
Cholesterol depletion has been shown to increase mitogen-activated protein kinase activation in response to stimulation with epidermal growth factor (EGF) (Furuchi, T., and Anderson, R. G. W. (1998) J. Biol. Chem. 273, 21099-21104). However, the underlying mechanisms are unknown. We show that cholesterol depletion increases EGF binding, whereas cholesterol loading lowers EGF binding. Based on binding analyses, we demonstrate that the observed changes in EGF binding are caused by alterations in the number of EGF receptors available for ligand binding, whereas the affinity of the receptor for EGF remains unaltered. We also show by immunofluorescence that in unstimulated cells the EGF receptor is localized in non-caveolar lipid rafts containing the ganglioside GM1 and that patching of these rafts by cholera toxin B-chain causes co-patching of EGF receptors. Experiments with solubilization in different detergents at 4 degrees C show that the association of the EGF receptor with these rafts is sensitive to Triton X-100 extraction but insensitive to extraction with another non-ionic detergent, Brij 58. Furthermore, experiments with cholesterol-depleted cells show that the association is cholesterol-dependent. We propose that non-caveolar lipid rafts function as negative regulators of EGF receptor signaling by sequestering a fraction of the EGF receptors in a state inaccessible for ligand binding.  相似文献   

12.
Binding of epidermal growth factor (EGF) to its receptor results in a cascade of events that culminate in cell division. The receptor is present on the cell surface in two forms of high and low affinity binding for EGF. EGF binding activates the receptor's intracellular tyrosine kinase activity and subsequently causes the receptor to be rapidly internalized into the cell via clathrin-coated pits. We have cloned the EGF receptor cDNA into a retroviral expression vector and made mutations in vitro to investigate the function of different receptor domains. Deletion of cytoplasmic sequences abolishes high but not low affinity sites as well as impairing the ability of the protein to internalize into cells. Thus, cytoplasmic sequences must be involved in the regulation of high affinity sites and are required for EGF-induced receptor internalization. A four amino acid insertion mutation at residue 708 abolishes the protein-tyrosine kinase activity of the immunoprecipitated receptor. However, this receptor mutant exhibits both the high and low affinity states, internalizes efficiently and is able to cause cells to undergo DNA synthesis in response to EGF. Another four amino acid insertion mutation (residue 888) abolishes protein-tyrosine kinase activity, high affinity binding, internalization and mitogenic responsiveness. Finally, a chimaeric receptor composed of the extracellular EGF binding domain and the cytoplasmic v-abl kinase region transforms Rat-I cells. This chimaeric receptor possesses intrinsic protein tyrosine kinase activity which cannot be regulated by EGF. Moreover, EGF fails to induce the internalization of the chimaeric receptor.  相似文献   

13.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

14.
We measured the kinetic parameters for interaction of epidermal growth factor (EGF) with fetal rat lung (FRL) cells under two sets of experimental conditions and applied sensitivity analysis to see which parameters were well-defined. In the first set of experiments (method 1), the kinetics of internalization and dissociation of radiolabeled EGF were measured with a temperature-shift protocol in medium initially devoid of free ligand. The initial concentration of radiolabeled EGF bound to the cell surface corresponded to levels of receptor occupancy ranging from approximately 200 receptors per cell to approximately 18,000 receptors per cell, a level at which EGF binding approaches saturation. In the second set of experiments (method 2), carried out at a constant temperature, we began with no surface-bound or internalized ligand. The initial free ligand concentration was varied from 0.2 to 50 ng/mL. In both sets of experiments, we measured surface-bound, internalized, and free 125I-EGF as functions of time and evaluated the parameters of a mathematical model of endocytosis. Sensitivity analysis showed that three rate constants were well-defined in this combination of two experimental approaches: ke, the endocytic rate constant; ka, the association rate constant; and kd, the dissociation rate constant. The endocytic parameter ke was found to be independent of initial surface receptor occupancy (method 1); there was some indication that it increased with initial free ligand concentration in method 2. Neither kd nor ka was found to change with extent of initial surface receptor occupancy or initial free ligand concentration, respectively, a finding of significance, since diffusion theory predicts these parameters will vary with surface receptor occupancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Receptor dimerization is generally considered to be the primary signaling event upon binding of a growth factor to its receptor at the cell surface. Little, however, is known about the precise molecular details of ligand-induced receptor dimerization, except for studies of the human growth hormone (hGH) receptor. We have analyzed the binding of epidermal growth factor (EGF) to the extracellular domain of its receptor (sEGFR) using titration calorimetry, and the resulting dimerization of sEGFR using small-angle X-ray scattering. EGF induces the quantitative formation of sEGFR dimers that contain two EGF molecules. The data obtained from the two approaches suggest a model in which one EGF monomer binds to one sEGFR monomer, and that receptor dimerization involves subsequent association of two monomeric (1:1) EGF-sEGFR complexes. Dimerization may result from bivalent binding of both EGF molecules in the dimer and/or receptor-receptor interactions. The requirement for two (possibly bivalent) EGF monomers distinguishes EGF-induced sEGFR dimerization from the hGH and interferon-gamma receptors, where multivalent binding of a single ligand species (either monomeric or dimeric) drives receptor oligomerization. The proposed model of EGF-induced sEGFR dimerization suggests possible mechanisms for both ligand-induced homo- and heterodimerization of the EGFR (or erbB) family of receptors.  相似文献   

16.
本文研究了EGF、PTH和RA对UMR106细胞EGF受体的调节作用。结果显示PTH能上调EGF的受体,UMR106细胞经bPTH(1-34)处理3天,EGF受体的相对结合率与对照比较提高了40.3%,每个细胞的EGF受体数目从7.22×10~3增加到1.44×10~4,Kd从2.02×10~(-11)增加到3.68×10~(-11)mol/L。而RA则能下调EGF受体,以RA处理3天,EGF受体数目从7.22×10~3下降到4.28×10~3,Kd则从2.02×10~(-11)增加到4.17×10~(-11)mol/L。提示PTH和RA可能通过调变其EGF受体而分别起到正性和负性生长调节作用。  相似文献   

17.
BACKGROUND: Flow cytometric microsphere-based binding assays can be used to measure molecular interactions with high sensitivity. We have used multiplexed microsphere technology to explore the effect that binding site density has on the apparent affinity of a soluble interaction partner. METHODS: The interaction of a nuclear receptor, peroxisome proliferator-activated receptor gamma ligand binding domain (PPARgamma LBD), with a synthetic peptide derived from a nuclear receptor coactivator protein, PPARgamma coactivator-1 alpha (PGC-1alpha), is the interacting system being studied. The density of this peptide coupled to fluorescently unique microsphere populations is varied by co-incubating the biotinylated peptide and avidin-coated microsphere populations with increasing the amounts of free D-biotin. The discrete-density peptide-coupled microsphere populations are combined to conduct a multiplexed binding experiment with Alexa 532-labeled PPARgamma LBD, in the absence or presence of a small molecule ligand. RESULTS: As the immobilized binding site density of PGC-1alpha peptide on fluorescent microspheres is increased the measured apparent affinity for PPARgamma LBD is increased. CONCLUSIONS: The density of binding sites immobilized to a surface has a pronounced effect on the apparent affinity for soluble binding partners. By controlling and varying the binding site density it is possible to increase the sensitivity of an interaction assay. In multiplexed assay formats it should be possible to normalize intrinsically unequal binding interactions by individually optimizing the binding site density of the immobilized interaction partner. However, to quantitatively measure intrinsic affinities of molecular interactions, low binding site densities are required and multivalent reagents must be avoided.  相似文献   

18.
Using seventeen human tumor cell lines derived from a variety of tissues, specific binding sites for epidermal growth factor (EGF), a mouse submandibular gland-derived growth factor, has been characterized. A significant amount of membrane-bound EGF receptors, although considerably varied, was demonstrated in all the tumor cell lines studied. Epidermoid carcinoma appeared to have more EGF receptors than adenocarcinoma. One small cell carcinoma of the lung, one choriocarcinoma of the stomach and three bone tumors also possessed EGF receptors comparable to those of epidermoid carcinoma, while one adenoacanthoma of the stomach had less EGF receptors comparable to adenocarcinoma. Among a variety of phorbol esters tested, tetradecanoyl phorbol acetate, a potent tumor promotor, was shown to be the most effective compound in inhibiting 125I-labeled EGF binding to its receptors. Our results indicate that human tumor cells contain varying amounts of membrane-bound receptors for EGF and that phorbol esters interact with these EGF receptor sites. However, the relationship between EGF receptor sites on tumor cells and cellular proliferation and/or differentiation awaits further study.  相似文献   

19.
Pike LJ  Casey L 《Biochemistry》2002,41(32):10315-10322
A variety of signal transduction pathways including PI turnover, MAP kinase activation, and PI 3-kinase activation have been shown to be affected by changes in cellular cholesterol content. However, no information is available regarding the locus (or loci) in the pathways that are susceptible to modulation by cholesterol. We report here that depletion of cholesterol with methyl-beta-cyclodextrin increases cell surface (125)I-EGF binding by approximately 40% via a mechanism that does not involve externalization of receptors from an internal pool. Cholesterol depletion also enhances in vivo EGF receptor autophosphorylation 2-5-fold without altering the rate of receptor dephosphorylation. In vitro kinase assays, which are done under conditions where phosphotyrosine phosphatases are inhibited and receptor trafficking cannot occur, demonstrate that treatment with methyl-beta-cyclodextrin leads to an increase in intrinsic EGF receptor tyrosine kinase activity. EGF receptors are localized in cholesterol-enriched lipid rafts but are released from this compartment upon treatment with methyl-beta-cyclodextrin. These data are consistent with the interpretation that localization to lipid rafts partially suppresses the binding and kinase functions of the EGF receptor and that depletion of cholesterol releases the receptor from lipid rafts, relieving the functional inhibition of the receptor. Cholesterol depletion also inhibits EGF internalization and down-regulation of the EGF receptor, and this likely contributes to the enhanced ability of EGF to stimulate downstream signaling pathways such as the activation of MAP kinase.  相似文献   

20.
Although all EGF receptors in EGF receptor-expressing cells are molecularly identical, they can be subdivided in two different classes that have either a high or a low affinity for EGF. Specifically the high-affinity class is associated with filamentous actin. To determine whether the interaction of the EGF receptor with actin induces its high-affinity state, we studied EGF-binding properties of an EGF receptor mutant that lacks the actin-binding site. Interestingly, we found that cells expressing this mutant receptor still display both high- and low-affinity classes of EGF receptors, indicating that the actin-binding domain does not determine the high-affinity binding state. By further mutational analysis we identified a receptor domain, within the tyrosine kinase domain, that regulates the affinity for EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号