首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Uimari  G. Thaller    I. Hoeschele 《Genetics》1996,143(4):1831-1842
Information on multiple linked genetic markers was used in a Bayesian method for the statistical mapping of quantitative trait loci (QTL). Bayesian parameter estimation and hypothesis testing were implemented via Markov chain Monte Carlo algorithms. Variables sampled were the augmented data (marker-QTL genotypes, polygenic effects), an indicator variable for linkage or nonlinkage, and the parameters. The parameter vector included allele frequencies at the markers and the QTL, map distances of the markers and the QTL, QTL substitution effect, and polygenic and residual variances. The criterion for QTL detection was the marginal posterior probability of a QTL being located on the chromosome carrying the markers. The method was evaluated empirically by analyzing simulated granddaughter designs consisting of 2000 sons, 20 related sires, and their ancestors.  相似文献   

2.
Xiong M  Fan R  Jin L 《Human heredity》2002,53(3):158-172
As a dense map of single nucleotide polymorphism (SNP) markers are available, population-based linkage disequilibrium (LD) mapping or association study is becoming one of the major tools for identifying quantitative trait loci (QTL) and for fine gene mapping. However, in many cases, LD between the marker and trait locus is not very strong. Approaches that maximize the potential of detecting LD will be essential for the success of LD mapping of QTL. In this paper, we propose two strategies for increasing the probability of detecting LD: (1) phenotypic selection and (2) haplotype LD mapping. To provide the foundations for LD mapping of QTL under selection, we develop analytic tools for assessing the impact of phenotypic selection on allele and haplotype frequencies, and LD under three trait models: single trait locus, two unlinked trait loci, and two linked trait loci with or without epistasis. In addition to a traditional chi(2) test, which compares the difference in allele or haplotype frequencies in the selected sample and population sample, we present multiple regression methods for LD mapping of QTL, and investigate which methods are effective in employing phenotypic selection for QTL mapping. We also develop a statistical framework for investigating and comparing the power of the single marker and multilocus haplotype test for LD mapping of QTL. Finally, the proposed methods are applied to mapping QTL influencing variation in systolic blood pressure in an isolated Chinese population.  相似文献   

3.
Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci   总被引:49,自引:2,他引:47  
C. Jiang  Z. B. Zeng 《Genetics》1995,140(3):1111-1127
We present in this paper models and statistical methods for performing multiple trait analysis on mapping quantitative trait loci (QTL) based on the composite interval mapping method. By taking into account the correlated structure of multiple traits, this joint analysis has several advantages, compared with separate analyses, for mapping QTL, including the expected improvement on the statistical power of the test for QTL and on the precision of parameter estimation. Also this joint analysis provides formal procedures to test a number of biologically interesting hypotheses concerning the nature of genetic correlations between different traits. Among the testing procedures considered are those for joint mapping, pleiotropy, QTL by environment interaction, and pleiotropy vs. close linkage. The test of pleiotropy (one pleiotropic QTL at a genome position) vs. close linkage (multiple nearby nonpleiotropic QTL) can have important implications for our understanding of the nature of genetic correlations between different traits in certain regions of a genome and also for practical applications in animal and plant breeding because one of the major goals in breeding is to break unfavorable linkage. Results of extensive simulation studies are presented to illustrate various properties of the analyses.  相似文献   

4.
The volumetric growth of tumor cells as a function of time is most often likely to be a complex trait, controlled by the combined influences of multiple genes and environmental influences. Genetic mapping has proven to be a powerful tool for detecting and identifying specific genes affecting complex traits, i.e., quantitative trait loci (QTL), based on polymorphic markers. In this article, we present a novel statistical model for genetic mapping of QTL governing tumor growth trajectories in humans. In principle, this model is a combination of functional mapping proposed to map function-valued traits and linkage disequilibrium mapping designed to provide high resolution mapping of QTL by making use of recombination events created at a historic time. We implement an EM-simplex hybrid algorithm for parameter estimation, in which a closed-form solution for the EM algorithm is derived to estimate the population genetic parameters of QTL including the allele frequencies and the coefficient of linkage disequilibrium, and the simplex algorithm incorporated to estimate the curve parameters describing the dynamic changes of cancer cells for different QTL genotypes. Extensive simulations are performed to investigate the statistical properties of our model. Through a number of hypothesis tests, our model allows for cutting-edge studies aimed to decipher the genetic mechanisms underlying cancer growth, development and differentiation. The implications of our model in gene therapy for cancer research are discussed.  相似文献   

5.
Wu R  Ma CX  Casella G 《Genetics》2002,160(2):779-792
Linkage analysis and allelic association (also referred to as linkage disequilibrium) studies are two major approaches for mapping genes that control simple or complex traits in plants, animals, and humans. But these two approaches have limited utility when used alone, because they use only part of the information that is available for a mapping population. More recently, a new mapping strategy has been designed to integrate the advantages of linkage analysis and linkage disequilibrium analysis for genome mapping in outcrossing populations. The new strategy makes use of a random sample from a panmictic population and the open-pollinated progeny of the sample. In this article, we extend the new strategy to map quantitative trait loci (QTL), using molecular markers within the EM-implemented maximum-likelihood framework. The most significant advantage of this extension is that both linkage and linkage disequilibrium between a marker and QTL can be estimated simultaneously, thus increasing the efficiency and effectiveness of genome mapping for recalcitrant outcrossing species. Simulation studies are performed to test the statistical properties of the MLEs of genetic and genomic parameters including QTL allele frequency, QTL effects, QTL position, and the linkage disequilibrium of the QTL and a marker. The potential utility of our mapping strategy is discussed.  相似文献   

6.
R L Wu 《Genetics》1999,152(4):1741-1752
Mapping strategies based on a half- or full-sib family design have been developed to map quantitative trait loci (QTL) for outcrossing species. However, these strategies are dependent on controlled crosses where marker-allelic frequency and linkage disequilibrium between the marker and QTL may limit their application. In this article, a maximum-likelihood method is developed to map QTL segregating in an open-pollinated progeny population using dominant markers derived from haploid tissues from single meiotic events. Results from the haploid-based mapping strategy are not influenced by the allelic frequencies of markers and their linkage disequilibria with QTL, because the probabilities of QTL genotypes conditional on marker genotypes of haploid tissues are independent of these population parameters. Parameter estimation and hypothesis testing are implemented via expectation/conditional maximization algorithm. Parameters estimated include the additive effect, the dominant effect, the population mean, the chromosomal location of the QTL in the interval, and the residual variance within the QTL genotypes, plus two population parameters, outcrossing rate and QTL-allelic frequency. Simulation experiments show that the accuracy and power of parameter estimates are affected by the magnitude of QTL effects, heritability levels of a trait, and sample sizes used. The application and limitation of the method are discussed.  相似文献   

7.
Zhang K  Wiener H  Beasley M  George V  Amos CI  Allison DB 《Genetics》2006,173(4):2283-2296
Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.  相似文献   

8.
Gao G  Hoeschele I 《Genetics》2005,171(1):365-376
Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with high likelihoods identified by a haplotyping method. The new method is compared with a Markov chain Monte Carlo (MCMC) method (Loki) in terms of QTL mapping performance on simulated pedigrees. Both methods yield almost identical results for the estimation of QTL positions and variance parameters, while the new method is much more computationally efficient than the MCMC approach for large pedigrees and large numbers of loci. The proposed method is also compared with an exact method (Merlin) in small simulated pedigrees, where both methods produce nearly identical estimates of position-specific kinship coefficients. The new method can be used for fine mapping with joint linkage disequilibrium and linkage analysis, which improves the power and accuracy of QTL mapping.  相似文献   

9.
Alan Hastings 《Genetics》1986,112(1):157-171
Using perturbation techniques, I study the equilibrium of deterministic discrete time multilocus models with weak epistasis. The most important results are on the relationship between epistasis and disequilibrium. Disequilibrium involving a particular set of loci reflects only epistasis simultaneously involving those loci. Moreover, all the disequilibria of all orders vary approximately as the inverse of the probability of at least one recombination event among the loci involved. Finally, higher order disequilibria among loci will be lower than lower order ones, even if the level of epistasis is the same at all orders. In this sense, the unit of selection is small. However, given the larger number of higher order disequilibria, these higher order disequilibria may play an important role in the computation of gametic frequencies from allelic frequencies in models with a large number of loci. Finally, I show that epistasis between blocks of loci will be averages of epistatic effects, not additions of epistatic effects. Thus, failure to find significant epistasis on a chromosomal basis does not rule out the importance of epistatic effects.  相似文献   

10.
Recent results indicate that association mapping in populations from applied plant breeding is a powerful tool to detect QTL which are of direct relevance for breeding. The focus of this study was to unravel the genetic architecture of six agronomic traits in sugar beet. To this end, we employed an association mapping approach, based on a very large population of 924 elite sugar beet lines from applied plant breeding, fingerprinted with 677 single nucleotide polymorphism (SNP) markers covering the entire genome. We show that in this population linkage disequilibrium decays within a short genetic distance and is sufficient for the detection of QTL with a large effect size. To increase the QTL detection power and the mapping resolution a much higher number of SNPs is required. We found that for QTL detection, the mixed model including only the kinship matrix performed best, even in the presence of a considerable population structure. In genome-wide scans, main effect QTL and epistatic QTL were detected for all six traits. Our full two-dimensional epistasis scan revealed that for complex traits there appear to be epistatic master regulators, loci which are involved in a large number of epistatic interactions throughout the genome.  相似文献   

11.
A Bayesian approach to the statistical mapping of Quantitative Trait Loci (QTLs) using single markers was implemented via Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and hypothesis testing. Parameters were estimated by marginal posterior means computed with a Gibbs sampler with data augmentation. Variables sampled included the augmented data (marker-QTL genotypes, polygenic effects), the event of linkage or nonlinkage, and the parameters (allele frequencies, QTL substitution effect, recombination rate, polygenic and residual variances). The analysis was evaluated empirically via application to simulated granddaughter designs consisting of 2000 sons, 20 related sires and their ancestors. Results obtained in this study and preliminary work on multiple linked markers and multiple QTLs support the usefulness of the Bayesian method for the statistical mapping of QTLs.  相似文献   

12.
Yang RC 《Genetics》2002,161(1):435-445
While nonrandom associations between zygotes at different loci (zygotic associations) frequently occur in Hardy-Weinberg disequilibrium populations, statistical analysis of such associations has received little attention. In this article, we describe the joint distributions of zygotes at multiple loci, which are completely characterized by heterozygosities at individual loci and various multilocus zygotic associations. These zygotic associations are defined in the same fashion as the usual multilocus linkage (gametic) disequilibria on the basis of gametic and allelic frequencies. The estimation and test procedures are described with details being given for three loci. The sampling properties of the estimates are examined through Monte Carlo simulation. The estimates of three-locus associations are not free of bias due to the presence of two-locus associations and vice versa. The power of detecting the zygotic associations is small unless different loci are strongly associated and/or sample sizes are large (>100). The analysis of zygotic associations not only offers an effective means of packaging numerous genic disequilibria required for a complete characterization of multilocus structure, but also provides opportunities for making inference about evolutionary and demographic processes through a comparative assessment of zygotic association vs. gametic disequilibrium for the same set of loci in nonequilibrium populations.  相似文献   

13.
Association-based linkage disequilibrium (LD) mapping is an increasingly important tool for localizing genes that show potential influence on human aging and longevity. As haplotypes contain more LD information than single markers, a haplotype-based LD approach can have increased power in detecting associations as well as increased robustness in statistical testing. In this paper, we develop a new statistical model to estimate haplotype relative risks (HRRs) on human survival using unphased multilocus genotype data from unrelated individuals in cross-sectional studies. Based on the proportional hazard assumption, the model can estimate haplotype risk and frequency parameters, incorporate observed covariates, assess interactions between haplotypes and the covariates, and investigate the modes of gene function. By introducing population survival information available from population statistics, we are able to develop a procedure that carries out the parameter estimation using a nonparametric baseline hazard function and estimates sex-specific HRRs to infer gene-sex interaction. We also evaluate the haplotype effects on human survival while taking into account individual heterogeneity in the unobserved genetic and nongenetic factors or frailty by introducing the gamma-distributed frailty into the survival function. After model validation by computer simulation, we apply our method to an empirical data set to measure haplotype effects on human survival and to estimate haplotype frequencies at birth and over the observed ages. Results from both simulation and model application indicate that our survival analysis model is an efficient method for inferring haplotype effects on human survival in population-based association studies.  相似文献   

14.
Here, we describe a randomization testing strategy for mapping interacting quantitative trait loci (QTLs). In a forward selection strategy, non-interacting QTLs and simultaneously mapped interacting QTL pairs are added to a total genetic model. Simultaneous mapping of epistatic QTLs increases the power of the mapping strategy by allowing detection of interacting QTL pairs where none of the QTL can be detected by their marginal additive and dominance effects. Randomization testing is used to derive empirical significance thresholds for every model selection step in the procedure. A simulation study was used to evaluate the statistical properties of the proposed randomization tests and for which types of epistasis simultaneous mapping of epistatic QTLs adds power. Least squares regression was used for QTL parameter estimation but any other QTL mapping method can be used. A genetic algorithm was used to search for interacting QTL pairs, which makes the proposed strategy feasible for single processor computers. We believe that this method will facilitate the evaluation of the importance at epistatic interaction among QTLs controlling multifactorial traits and disorders.  相似文献   

15.
利用连锁不平衡理论,人类遗传学家已能把影响人类疾病的质量基因定位在小至1cM区域内,有些基因已被克隆出来。罗泽伟等进一步发展统计分析方法检测及估算分子标记与QTL之间的连锁不平衡系数,从而提出了人类复杂遗传病高解析度基因定位的理论策略。以此为基础,进一步探讨了供试群体在双亲基因频率存在差异时检测QTL和检测QTL互作的方法,给出了有关的理论结果。  相似文献   

16.
Modeling epistasis of quantitative trait loci using Cockerham's model   总被引:10,自引:0,他引:10  
Kao CH  Zeng ZB 《Genetics》2002,160(3):1243-1261
We use the orthogonal contrast scales proposed by Cockerham to construct a genetic model, called Cockerham's model, for studying epistasis between genes. The properties of Cockerham's model in modeling and mapping epistatic genes under linkage equilibrium and disequilibrium are investigated and discussed. Because of its orthogonal property, Cockerham's model has several advantages in partitioning genetic variance into components, interpreting and estimating gene effects, and application to quantitative trait loci (QTL) mapping when compared to other models, and thus it can facilitate the study of epistasis between genes and be readily used in QTL mapping. The issues of QTL mapping with epistasis are also addressed. Real and simulated examples are used to illustrate Cockerham's model, compare different models, and map for epistatic QTL. Finally, we extend Cockerham's model to multiple loci and discuss its applications to QTL mapping.  相似文献   

17.
Miller JR  Hawthorne D 《Genetics》2005,171(3):1353-1364
Given the relative ease of identifying genetic markers linked to QTL (compared to finding the loci themselves), it is natural to ask whether linked markers can be used to address questions concerning the contemporary dynamics and recent history of the QTL. In particular, can a marker allele found associated with a QTL allele in a QTL mapping study be used to track population dynamics or the history of the QTL allele? For this strategy to succeed, the marker-QTL haplotype must persist in the face of recombination over the relevant time frame. Here we investigate the dynamics of marker-QTL haplotype frequencies under recombination, population structure, and divergent selection to assess the potential utility of linked markers for a population genetic study of QTL. For two scenarios, described as "secondary contact" and "novel allele," we use both deterministic and stochastic methods to describe the influence of gene flow between habitats, the strength of divergent selection, and the genetic distance between a marker and the QTL on the persistence of marker-QTL haplotypes. We find that for most reasonable values of selection on a locus (s < or = 0.5) and migration (m > 1%) between differentially selected populations, haplotypes of typically spaced markers (5 cM) and QTL do not persist long enough (>100 generations) to provide accurate inference of the allelic state at the QTL.  相似文献   

18.
Observations show that evolutionary processes often relate to multilocus epistatic selection. Here we develop further the approach suggested earlier by Zhivotovsky and Gavrilets to admit arbitrary multilocus epistasis. The obtained dynamic equations for allelic frequencies and gametic disequilibria are represented in a simple form. If selection is weak, this result extends Wright’s evolutionary equation to the case of cis-trans effects and sex differences in both recombination rates and genotypic fitnesses. Additionally to Wright’s equations for allelic frequencies, we derive equations for the gametic disequilibrium terms. We also give a general expression for the gametic disequilibria in a quasi-linkage state.  相似文献   

19.
A mixture model for determining quantitative trait loci (QTL) affecting growth trajectories has been proposed in the literature. In this article, we extend this model to a more general situation in which longitudinal traits for each subject are measured at unequally spaced time intervals, different subjects have different measurement patterns, and the residual correlation within subjects is nonstationary. We derive an EM-simplex hybrid algorithm to estimate the allele frequencies, Hardy-Weinberg disequilibrium, and linkage disequilibrium between QTL in the original population and parameters contained in the growth equation and in the covariance structure. A worked example of head circumference growth in 145 children is used to validate our extended model. A simulation study is performed to examine the statistical properties of the parameter estimation obtained from this example. Finally, we discuss the implications and extensions of our model for detecting QTL that affect growth trajectories.  相似文献   

20.
A Bayesian approach to the statistical mapping of Quantitative Trait Loci (QTLs) using single markers was implemented via Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and hypothesis testing. Parameter estimators were marginal posterior means computed using a Gibbs sampler with data augmentation. Variables sampled included the augmented data (marker-QTL genotypes, polygenic effects), an indicator variable for linkage, and the parameters (allele frequency, QTL substitution effect, recombination rate, polygenic and residual variances). Several MCMC algorithms were derived for computing Bayesian tests of linkage, which consisted of the marginal posterior probability of linkage and the marginal likelihood of the QTL variance associated with the marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号