首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
植物转录因子的胞间运动   总被引:1,自引:0,他引:1  
植物体的组织和器官由多细胞组成,细胞之间的通信对植物体的生长发育必不可少。转录因子作为一类特殊的蛋白质分子不仅在转录水平上参与植物生长发育的调控,而且新近研究发现,转录因子的胞间运动是细胞之间通信方式之一,具有重要的功能。对转录因子胞间运动的发现过程、转录因子胞间运动的机制及其通道进行了论述。转录因子的胞间运动有基于扩散作用的非目标性转运和具有目标性的主动转运两种模式。转录因子胞间运动具有明显的组织特异性和方向性。分析了影响转录因子胞间运动的因素,讨论了转录因子胞间运动的功能以及转录因子胞间运动所参与的植物生长发育及形态建成的调控。  相似文献   

11.
CAPRICE (CPC), a small, R3-type Myb-like protein, is a positive regulator of root hair development in Arabidopsis. Cell-to-cell movement of CPC is important for the differentiation of epidermal cells into trichoblasts (root hair cells). CPC is transported from atrichoblasts (hairless cells), where it is expressed, to trichoblasts, and generally accumulates in their nuclei. Using truncated versions of CPC fused to GFP, we identified a signal domain that is necessary and sufficient for CPC cell-to-cell movement. This domain includes the N-terminal region and a part of the Myb domain. Amino acid substitution experiments indicated that W76 and M78 in the Myb domain are critical for targeted transport, and that W76 is crucial for the nuclear accumulation of CPC:GFP. To evaluate the tissue-specificity of CPC movement, CPC:GFP was expressed in the stele using the SHR promoter and in trichoblasts using the EGL3 promoter. CPC:GFP was able to move from trichoblasts to atrichoblasts but could not exit from the stele, suggesting the involvement of tissue-specific regulatory factors in the intercellular movement of CPC. Analyses with a secretion inhibitor, Brefeldin A, and with an rhd3 mutant defective in the secretion process in root epidermis suggested that intercellular CPC movement is mediated through plasmodesmata. Furthermore, the fusion of CPC to tandem-GFPs defined the capability of CPC to increase the size exclusion limit of plasmodesmata.  相似文献   

12.
Lu B  Ackerman L  Jan LY  Jan YN 《Molecular cell》1999,4(6):883-891
Partner of Numb (Pon) colocalizes with the determinant Numb and is required for its proper asymmetric localization in Drosophila. How the asymmetric localization of Pon is accomplished is not well understood. Here, we show that Pon localization takes place at the protein level and that its C-terminal region is necessary and sufficient for asymmetric localization. Fusion of the Pon localization domain with green fluorescent protein (GFP) allowed monitoring of the localization process in living embryos. Upon a neuroblast's entry into mitosis, Pon is recruited from the cytoplasm to the cortex. Cortically recruited Pon can move apically or basally within the two-dimensional confines of the cortex. This movement can occur when myosin motor activity is inhibited. However, the restriction of Pon to the basal cortex requires both actomyosin and Inscuteable.  相似文献   

13.
BACKGROUND: Individual plant cells are encased in a cell wall. To enable cell-to-cell communication, plants have evolved channels, termed plasmodesmata, to span thick walls and interconnect the cytoplasm between adjacent cells. How macromolecules pass through these channels is now beginning to be understood. RESULTS: Using two green fluorescent protein (GFP) reporters and a non-invasive transfection system, we assayed for intercellular macromolecular traffic in leaf epidermal cells. Plasmodesmata were found in different states of dilation. We could distinguish two forms of protein movement across plasmodesmata, non-targeted and targeted. Although leaves have generally been considered closed to non-specific transport of macromolecules, we found that 23% of the cells had plasmodesmatal channels in a dilated state, allowing GFP that was not targeted to plasmodesmata to move into neighboring cells. GFP fusions that were targeted to the cytoskeleton or to the endoplasmic reticulum did not move between cells, whereas those that were localized to the cytoplasm or nucleus diffused to neighboring cells in a size-dependent manner. Superimposed upon this non-specific exchange, proteins that were targeted to the plasmodesmata could transit efficiently between 62% of transfected cells. CONCLUSIONS: A significant population of leaf cells contain plasmodesmata in a dilated state, allowing macromolecular transport between cells. Protein movement potential is regulated by subcellular address and size. These parameters of protein movement illustrate how gradients of signaling macromolecules could be formed and regulated, and suggest that non-cell-autonomous development in plants may be more significant than previously assumed.  相似文献   

14.
15.
Mitogen-activated protein kinases (MAPKs) phosphorylate target proteins in both the cytoplasm and nucleus, and a strong correlation exists between the subcellular localization of MAPK and resulting cellular responses. It was thought that MAPK phosphorylation was always followed by rapid nuclear translocation. However, we and others have found that MAPK phosphorylation is not always sufficient for nuclear translocation in vivo. In the developing Drosophila wing, MAPK-mediated signaling is required both for patterning and for cell proliferation, although the mechanism of this differential control is not fully understood. Here, we show that phosphorylated MAPK (pMAPK) is held in the cytoplasm in differentiating larval and pupal wing vein cells, and we show that this cytoplasmic hold is required for vein cell fate. At the same time, we show that MAPK does move into the nucleus of other wing cells where it promotes cell proliferation. We propose a novel Ras pathway bifurcation in Drosophila and our results suggest a mechanism by which MAPK phosphorylation can signal two different cellular outcomes (differentiation versus proliferation) based on the subcellular localization of MAPK.  相似文献   

16.
SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号