首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper jaw protrusion is hypothesized to improve feeding performance in teleost fishes by enhancing suction production and stealth of the feeding event. However, many cyprinodontiform fishes (mid-water feeders, such as mosquitofish, killifish, swordtails, mollies and pupfish) use upper jaw protrusion for "picking" prey out of the water column or off the substrate; this feeding mode may require improved jaw dexterity, but does not necessarily require increased stealth and/or suction production. We describe functional aspects of the bones, muscles and ligaments of the anterior jaws in three cyprinodontiform genera: Fundulus (Fundulidae), Gambusia and Poecilia (Poeciliidae). All three genera possess a premaxillomandibular ligament that connects the premaxilla of the upper jaw to the mandible. The architecture of this ligament is markedly different from the upper-lower jaw connections previously described for basal atherinomorphs or other teleosts, and this loose ligamentous connection allows for more pronounced premaxillary protrusion in this group relative to closely related outgroup taxa. Within poeciliids, a novel insertion of the second division of the adductor mandibulae (A2) onto the premaxilla has also evolved, which allows this jaw adductor to actively retract the premaxilla during mouth closing. This movement is in contrast with most other teleosts, where the upper jaw is retracted passively via pressure applied by the adduction of the lower jaw. We postulate that this mechanism of premaxillary protrusion mediates the cyprinodontiforms' ability to selectively pick specific food items from the water column, surface or bottom, as a picking-based feeding mechanism requires controlled and coordinated "forceps-like" movements of the upper and lower jaws. This mechanism is further refined in some poeciliids, where direct muscular control of the premaxillae may facilitate picking and/or scraping material from the substrate.  相似文献   

2.
Jaw protrusion is a major functional motif in fish feeding and can occur during mouth opening or closing. This temporal variation impacts the role that jaw protrusion plays in prey apprehension and processing. The lesser electric ray Narcine brasiliensis is a benthic elasmobranch (Batoidea: Torpediniformes) with an extreme and unique method of prey capture. The feeding kinematics of this species were investigated using high-speed videography and pressure transduction. The ray captures its food by protruding its jaws up to 100% of head length (approximately 20% of disc width) beneath the substrate and generating negative oral pressures (< or = 31 kPa) to suck worms into its mouth. Food is further winnowed from ingested sediment by repeated, often asymmetrical protrusions of the jaws (> 70 degrees deviation from the midline) while sand is expelled from the spiracles, gills and mouth. The pronounced ram contribution of capture (jaw protrusion) brings the mouth close enough to the food to allow suction feeding. Due to the anatomical coupling of the jaws, upper jaw protrusion occurs in the expansive phase (unlike most elasmobranchs and similar to bony fishes), and also exhibits a biphasic (slow-open, fast-open) movement similar to tetrapod feeding. The morphological restrictions that permit this unique protrusion mechanism, including coupled jaws and a narrow gape, may increase suction performance, but also likely strongly constrain dietary breadth.  相似文献   

3.
Acipenseriformes (sturgeon and paddlefish) are basal actinopterygians with a highly derived cranial morphology that is characterized by an anatomical independence of the jaws from the neurocranium. We examined the morphological and kinematic basis of prey capture in the Acipenseriform fish Scaphirhynchus albus, the pallid sturgeon. Feeding pallid sturgeon were filmed in lateral and ventral views and movement of cranial elements was measured from video sequences. Sturgeon feed by creating an anterior to posterior wave of cranial expansion resulting in prey movement through the mouth. The kinematics of S. albus resemble those of other aquatic vertebrates: maximum hyoid depression follows maximum gape by an average of 15 ms and maximum opercular abduction follows maximum hyoid depression by an average of 57 ms. Neurocranial rotation was not a part of prey capture kinematics in S. albus, but was observed in another sturgeon species, Acipenser medirostris. Acipenseriformes have a novel jaw protrusion mechanism, which converts rostral rotation of the hyomandibula into ventral protrusion of the jaw joint. The relationship between jaw protrusion and jaw opening in sturgeon typically resembles that of elasmobranchs, with peak upper jaw protrusion occurring after peak gape.  相似文献   

4.
Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey. Laboratory feeding trials for C. trichrous were recorded using high-speed digital imaging; from these sequences we quantified feeding performance parameters to use as inputs for the biomechanical model. According to the model outputs, the upper jaw makes a substantial contribution to the overall forces produced during mouth closing in C. trichrous. Thus, biomechanical models that only consider lower jaw closing forces will underestimate total bite force for this and likely other teleost species. We also quantified and subsequently modeled feeding events for C. trichrous consuming prey from the water column versus picking attached prey from the substrate to investigate whether there is a functional trade-off between prey capture modes. We found that individuals of C. trichrous alter their feeding behavior when consuming different prey types by changing the timing and magnitude of upper and lower jaw movements and that this behavioral modification will affect the forces produced by the jaws during prey capture by dynamically altering the lever mechanics of the jaws. In fact, the slower, lower magnitude movements produced during picking-based prey capture should produce a more forceful bite, which will facilitate feeding on benthic attached prey items, such as corals. Similarities between butterflyfishes and other teleost lineages that also employ picking-based prey capture suggest that a suite of key behavioral and morphological innovations enhances feeding success for benthic attached prey items.  相似文献   

5.
Synopsis Luciocephalus pulcher possesses one of the most protrusible jaws known among teleosts, the premaxillae extending anteriorly a distance of 33% of the head length during feeding. Jaw bone movement during feeding proceeds according to a stereotypical pattern and resembles that of other teleosts except for extreme cranial elevation and premaxillary protrusion. Anatomical specializations associated with cranial elevation include: a highly modified first vertebra with a separate neural spine, articular fossae on the posterior aspect, greatly enlarged zygapophyses on the second vertebra with complex articular condyles, and highly pinnate multi-layered epaxial musculature with multiple tendinous insertions on the skull. Luciocephalus, despite the extreme jaw protrusion, does not use suction during prey capture: rather, the prey is captured by a rapid lunge (peak velocity of about 150 cm per sec) and is surrounded by the open mouth. Previous hypotheses of the function of upper jaw protrusion are reviewed in relation to jaw movements inLuciocephalus. Protrusion is not obligatorily linked with suction feeding; behavioral aspects of the feeding process limit the possible range of biological roles of a given morphological specialization, and make prediction of role from structure risky.  相似文献   

6.
Jaw mechanics and dietary breadth in California grunion Leuresthes tenuis and Gulf grunion Leuresthes sardina were compared with three other members of the tribe Atherinopsini to test whether these two species have evolved a novel jaw protrusion that might be associated with feeding narrowly on abundant prey near spawning beaches. Quantitative comparison of cleared‐and‐stained specimens of five members of the atherinopsine clade showed that, compared with false grunion Colpichthys regis, topsmelt Atherinops affinis and jacksmelt Atherinopsis californiensis, L. tenuis and L. sardina have longer, more downwardly directed premaxillary protrusion, expanded dentary and premaxillary bones, greater lower jaw rotation and larger premaxilla–vomer separation. Leuresthes tenuis showed greater differences than L. sardina in these features. Comparison of the gut contents of L. tenuis and A. affinis with zooplankton samples collected simultaneously with these fishes in the water column within 1 km of shore showed that, as predicted, L. tenuis fed predominantly on mysid crustaceans and had a narrower diet than A. affinis. High‐speed video analysis showed that L. tenuis exhibits a mean time to maximum jaw protrusion c. 2·5 times shorter than that of A. affinis. The grunion sister species, especially L. tenuis, have evolved suction feeding that may allow efficient feeding on common, evasive prey near spawning sites. The morphological traits seen in both species of Leuresthes signify a marked difference from their closest relatives in prey capture and suggest a type of jaw protrusion not yet seen in cyprinodontiforms or perciforms.  相似文献   

7.
All of the diverse jaw structures in higher teleosts appear to be modifications of a single basal type and are treated as such. Only some of the principal variants are discussed. Though the two jaws act as a coordinated unit during feeding, their movements are different. The upper and lower jaws are discussed separately. In the upper jaw the principal concern is with the various types of premaxillary protrusion and with the secondary development in some groups of a rocking premaxilla. For the lower jaw most of the account is devoted to the repeated differentiation of movements in its anterior and posterior sections. The paper concludes with comments on the jaw apparatus as a functional unit and its evolution in higher teleosts.  相似文献   

8.
Premaxillary protrusion has evolved multiple times within teleosts, and has been implicated as contributing to the evolutionary success of clades bearing this adaptation. Cypriniform fishes protrude the jaws via the kinethmoid, a median sesamoid bone that is a synapomorphy for the order. Using five cypriniform species, we provide the first comparative kinematic study of jaw protrusion in this speciose order. Our goals were to compare jaw protrusion in cypriniforms to that in other clades that independently evolved upper jaw protrusion, assess the variation in feeding kinematics among members of the order, and test if variation in the shape of the kinethmoid has an effect on either jaw kinematics or the degree of suction or ram used during a feeding event. We also examined the coordination in the relative timings of upper and lower jaw movements to gain insight on the cypriniform protrusile mechanism. Overall, speed of protrusion in cypriniforms is slower than in other teleosts. Protrusion speed differed significantly among cypriniforms but this is likely not due to kinethmoid shape alone; rather, it may be a result of both kinethmoid shape and branching patterns of the A1 division of the adductor mandibulae. In the benthic cypriniforms investigated here, upper jaw protrusion contributed up to 60% of overall ram of the strikes and interestingly, these species also produced the most suction. There is relatively little coordination of upper and lower jaw movements in cypriniforms, suggesting that previous hypotheses of premaxillary protrusion via lower jaw depression are not supported within Cypriniformes. Significant variation in kinematics suggests that cypriniforms may have the ability to modulate feeding, which could be an advantage if presented with the challenge of feeding on different types of prey.  相似文献   

9.
Cleaner fishes are well known for removing and consuming ectoparasites off other taxa. Observers have noted that cleaners continuously “pick” ectoparasites from the bodies of their respective client organisms, but little is known about the kinematics of cleaning. While a recent study described the jaw morphology of cleaners as having small jaw‐closing muscles and weak bite forces, it is unknown how these traits translate into jaw movements during feeding to capture and remove ectoparasites embedded in their clients. Here, we describe cranial morphology and kinematic patterns of feeding for three species of cleaner wrasses. Through high‐speed videography of cleaner fishes feeding in two experimental treatments, we document prey capture kinematic profiles for Labroides dimidiatus, Larabicus quadrilineatus, and Thalassoma lutescens. Our results indicate that cleaning in labrids may be associated with the ability to perform low‐displacement, fast jaw movements that allow for rapid and multiple gape cycles on individually targeted items. Finally, while the feeding kinematics of cleaners show notable similarities to those of “picker” cyprinodontiforms, we find key differences in the timing of events. In fact, cleaners generally seem to be able to capture prey twice as fast as cyprinodontiforms. We thus suggest that the kinematic patterns exhibited by cleaners are indicative of picking behavior, but that “pickers” may be more kinematically diverse than previously thought. J. Morphol. 276:1377–1391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
A comparison of nineteen taxa of teleost fishes suggests the gradual acquisition of systems of upper jaw protrusion in the course of fish evolution. However, in view of the loss of protrusion in several groups of advanced teleosts the biomechanicsof protrusile jaws are analysed based on the hydrodynamics of suction feeding. Calculations show that protrusion may reduce the energy otherwise spent in a feeding act to get the predator's mouth as near to the prey in the same time with about 80%. Other generalized advantages and disadvantages of upper jaw protrusion are explained. Detailed ecological data to calculate the balance between pros and cons of jaw protrusion of a particular species in its habitat are still lacking. There is no incompatibility between presence and disappearance of protrusile jaws in fish and current neo-darwinistic theories of evolution.  相似文献   

11.
Synopsis The silver arawana, Osteoglossum bicirrhosum, hunts along shorelines and within flooded forests in the Amazon River basin and supplements its limited consumption of aquatic vertebrates by leaping from the water to obtain terrestrial and arboreal prey. We offered O. bicirrhosum prey both suspended above and submerged below the surface of the water. From high-speed digital recordings, we measured kinematic variables associated with the jaws, cranium, pectoral fins, and body during orientation and prey capture. Aquatic and aerial feeding events were kinematically distinct, with aerial events generally involving faster, larger movements and a distinct delay in the onset of lower jaw depression until the head had left the water. The comparatively large gape during leaping may facilitate prey capture by overcoming variability in the apparent position of the prey due to refraction, while the delayed onset of mouth opening may serve to reduce the effects of drag. This distinctive leaping behaviour allows exploitation of the terrestrial prey base, especially during seasonal inundation of the Amazon River basin when the aquatic food base is widely dispersed.  相似文献   

12.
Ontogenetic diet shifts in juvenile fishes are sometimes associated with proportional changes to the feeding mechanism. In addition, many piscivorous teleosts transition from invertebrate-prey to fish-prey when the mouth attains a specific diameter. Allometric (disproportionate) growth of the jaws could accelerate a young fish’s ability to reach a critical gape diameter; alternately by opening the lower jaw to a greater degree, a fish might increase gape behaviorally. We investigated the ontogeny of feeding morphology and kinematics in an imperiled piscivore, the Colorado pikeminnow (Ptychocheilus lucius) in a size range of individuals across which a diet shift from invertebrate-prey to prey-fishes is known to occur. We predicted that: (1) the feeding apparatus of the fish would grow proportionally with the rest of the body (isometric growth), that (2) anatomical gape diameter at the known diet transition would be a similar gape diameter to that observed for other piscivorous juvenile fishes (15–20 mm) and (3) feeding kinematic variables would scale isometrically (that is, change in direct proportion to body length) as juvenile pikeminnow became larger. Furthermore, we also asked the question: if changes in feeding morphology and kinematics are present, do the changes in morphology appear to generate the observed changes in kinematics? For juvenile Colorado pikeminnow, the majority of the morphological variables associated with the skull and jaws scale isometrically (that is, proportionally), but seven of eight kinematic variables, including functional gape, scale with negative allometry (that is, they became disproportionately smaller in magnitude). In contrast with the overall trend of isometry, two key aspects of feeding morphology do change with size; the lower jaw of a young Colorado pikeminnow becomes longer (positive allometry), while the head becomes shallower (negative allometry). These findings do not support the hypothesis that morphological ontogenetic changes directly generate changes in feeding kinematics; in fact, allometric jaw growth would, a priori, be expected to generate a larger gape in older fish—which is the opposite of what was observed. We conclude that ontogenetic morphological changes produce a more streamlined cranium that may reduce drag during a rapid, anteriorly directed strike, while concomitant behavioral changes reduce the magnitude of jaw movements—behavioral changes that will facilitate a very rapid opening and closing of the jaws during the gape cycle. Thus, for juvenile pikeminnow, speed and stealth appear to be more important than mouth gape during prey capture.  相似文献   

13.
The kinematics of prey capture in blackchin tilapia (Sarotherodon melanotheron) subjected to three experimental treatments (control, anesthetization, and opercular linkage disruption) were analyzed using high-speed video to explore the role of the opercular four-bar linkage in depressing the lower jaw in teleost fishes. A series of two-way mixed model analyses of variance (random effects=fish; fixed effects=treatment) revealed that maximum gape, lower jaw angle, gape cycle, and time to lower jaw depression differed among treatments. Tukey post-hoc comparisons revealed that the opercular linkage disruption treatment differed from the control and anesthetization treatments, suggesting that severing the opercular linkage affected the ability of fish to depress the lower jaw. We hypothesize that although the opercular four-bar linkage system may not be the only linkage mechanism involved in depressing the lower jaw, it plays a very important role in opening the mouth during feeding in teleost fishes.  相似文献   

14.
Analysis of videotaped feeding sequences provides novel documentation of suction feeding in captive juvenile long-finned pilot whales ( Globicephala melas ). Swimming and stationary whales were videotaped while feeding at the surface, mid-water, and bottom. The ingestion sequence includes a preparatory phase with partial gape followed by jaw opening and rapid hyoid depression to suck in prey at a mean distance of 14 cm (duration 90 msec), although prey were taken from much greater distances. Depression and retraction of the large, piston-like tongue generate negative intraoral pressures for prey capture and ingestion. Food was normally ingested without grasping by teeth yet was manipulated with lingual, hyoid, and mandibular movement for realignment; suction was then used to transport prey into the oropharynx. Whales frequently rolled or inverted before taking prey, presumably to avoid grasping and repositioning. Prey were sucked off the bottom or sides of the pool without direct contact; lateral suction was used to ingest items from the sides of the mouth.  相似文献   

15.
Some species of Clariidae (air breathing catfishes) have extremely large (hypertrophied) jaw closure muscles. Besides producing higher bite forces, the enlarged muscles may also cause higher accelerations of the lower jaw during rapid mouth closure. Thus, jaw adductor hypertrophy could potentially also enable faster mouth closure. In this study, a forward dynamic model of jaw closing is developed to evaluate the importance of jaw adductor hypertrophy on the speed of mouth closure. The model includes inertia, pressure, tissue resistance and hydrodynamic drag forces on the lower jaw, which is modelled as a rotating half-ellipse. Simulations are run for four clariid species showing a gradual increase in jaw adductor hypertrophy (Clarias gariepinus, Clariallabes longicauda, Gymnallabes typus and Channallabes apus). The model was validated using data from high-speed videos of prey captures in these species. In general, the kinematic profiles of the fastest mouth closure from each species are reasonably well predicted by the model. The model was also used to compare the four species during standardized mouth closures (same initial gape angle, travel distance and cranial size). These simulations suggest that the species with enlarged jaw adductors have an increased speed of jaw closure (in comparison with the non-hypertrophied C. gariepinus) for short lower jaw rotations and when feeding at high gape angles. Consequently, the jaw system in these species seems well equipped to capture relatively large, evasive prey. For prey captures during which the lower jaw rotates freely over a larger distance before impacting the prey, the higher kinematic efficiency of the C. gariepinus jaw system results in the fastest jaw closures. In all cases, the model predicts that an increase in the physiological cross-sectional area of the jaw muscles does indeed contribute to the speed of jaw closure in clariid fish.  相似文献   

16.
We investigated the functional morphology of lingual prey capture in the blue‐tongued skink, Tiliqua scincoides, a lingual‐feeding lizard nested deep within the family Scincidae, which is presumed to be dominated by jaw‐feeding. We used kinematic analysis of high‐speed video to characterize jaw and tongue movements during prey capture. Phylogenetically informed principal components analysis of tongue morphology showed that, compared to jaw‐feeding scincids and lacertids, T. scincoides and another tongue‐feeding scincid, Corucia zebrata, are distinct in ways suggesting an enhanced ability for hydrostatic shape change. Lingual feeding kinematics show substantial quantitative and qualitative variation among T. scincoides individuals. High‐speed video analysis showed that T. scincoides uses significant hydrostatic elongation and deformation during protrusion, tongue‐prey contact, and retraction. A key feature of lingual prey capture in T. scincoides is extensive hydrostatic deformation to increase the area of tongue‐prey contact, presumably to maximize wet adhesion of the prey item. Adhesion is mechanically reinforced during tongue retraction through formation of a distinctive “saddle” in the foretongue that supports the prey item, reducing the risk of prey loss during retraction.  相似文献   

17.
Mandibular mobility accompanying gape change in Northern and Antarctic minke whales was investigated by manipulating jaws of carcasses, recording jaw movements via digital instruments (inclinometers, accelerometers, and goniometers), and examining osteological and soft tissue movements via computed tomography (CT)-scans. We investigated longitudinal (α) rotation of the mandible and mediolateral displacement at the symphysis (Ω1) and temporomandibular joint (Ω2) as the mouth opened (Δ). Results indicated three phases of jaw opening. In the first phase, as gape increased from zero to 8°, there was slight (<1°) α and Ω rotation. As gape increased between 20 and 30°, the mandibles rotated slightly laterally (Mean 3°), the posterior condyles were slightly medially displaced (Mean 4°), and the anterior ends at the symphysis were laterally displaced (Mean 3°). In the third phase of jaw opening, from 30° to full (≥90°) gape, these motions reversed: mandibles rotated medially (Mean 29°), condyles were laterally displaced (Mean 14°), and symphyseal ends were medially displaced (Mean 1°). Movements were observed during jaw manipulation and analyzed with CT-images that confirmed quantitative inclinometer/accelerometer data, including the unstable intermediate (Phase 2) position. Together these shifting movements maintain a constant distance for adductor muscles stretched between the skull's temporal fossa and mandible's coronoid process. Mandibular rotation enlarges the buccal cavity's volume as much as 36%, likely to improve prey capture in rorqual lunge feeding; it may strengthen and stabilize jaw opening or closure, perhaps via a simple locking or unlocking mechanism. Rotated lips may brace baleen racks during filtration. Mandibular movements may serve a proprioceptive mechanosensory function, perhaps via the symphyseal organ, to guide prey engulfment and water expulsion for filtration.  相似文献   

18.
Cyprinodontiforms are a diverse and speciose order that includes topminnows, pupfishes, swordtails, mosquitofishes, guppies, and mollies. Sister group to the Beloniformes and Atheriniformes, Cyprinodontiformes contains approximately twice the number of species of these other two orders combined. Recent studies suggest that this group is well suited to capturing prey by “picking” small items from the water surface, water column, and the substrate. Because picking places unusual performance demands on the feeding apparatus, this mode of prey capture may rely upon novel morphological modifications not found in more widespread ram‐ or suction‐based feeding mechanisms. To assess this evolutionary hypothesis, we describe the trophic anatomy of 16 cyprinodontiform species, selected to broadly represent the order as well as capture intrageneric variation. The group appears to have undergone gradual morphological changes to become increasingly specialized for picking and scraping behaviors. We also identify a suite of functional characters related to the acquisition of a novel and previously undescribed mechanism of premaxillary protrusion and retraction, including: modification of the “premaxillomandibular” ligament (which connects each side of the premaxilla to the ipsilateral mandible, or lower jaw), a novel architecture of the ligaments and bony elements that unite the premaxillae, maxillae and palatine bones, and novel insertions of the adductor muscles onto the jaws. These morphological changes to both the upper and lower jaws suggest an evolutionary trend within this group toward increased reliance on picking individual prey from the water column/substrate or for scraping encrusting material from the substrate. We propose that the suite of morphological characters described here enable a functional innovation, “picking,” which leads to novel trophic habits. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
The New World cichlids Petenia splendida and Caquetaia spp. possess extraordinarily protrusible jaws. We investigated the feeding behavior of extreme (here defined as greater than 30% head length) and modest jaw-protruding Neotropical cichlids by comparing feeding kinematics, cranial morphology, and feeding performance. Digital high-speed video (500 fps) of P. splendida, C. spectabile, and Astronotus ocellatus feeding on live guppy prey was analyzed to generate kinematic and performance variables. All three cichlid taxa utilized cranial elevation, lower jaw depression, and rotation of the suspensorium to protrude the jaws during feeding experiments. Extreme anterior jaw protrusion in P. splendida and C. spectabile resulted from augmented lower jaw depression and anterior rotation of the suspensorium. Morphological comparisons among eight cichlid species revealed novel anterior and posterior points of flexion within the suspensorium of P. splendida and Caquetaia spp. The combination of anterior and posterior loosening within the suspensorium in P. splendida and Caquetaia spp. permitted considerable anterior rotation of the suspensorium and contributed to protrusion of the jaws. Petenia splendida and C. spectabile exhibited greater ram distance and higher ram velocities than did A. ocellatus, resulting primarily from increased jaw protrusion. Petenia splendida and C. spectabile exhibited lower suction feeding performance than A. ocellatus, as indicated by lower suction-induced prey movements and velocities. Thus, extreme jaw protrusion in these cichlids may represent an adaptation for capturing elusive prey by enhancing the ram velocity of the predator but does not enhance suction feeding performance.  相似文献   

20.
The structurally reinforced jaws of the cownose ray, Rhinoptera bonasus testify to this species' durophagous diet of mollusks, but seem ill-suited to the behaviors necessary for excavating such prey. This study explores this discordance by investigating the prey excavation and capture kinematics of R. bonasus. Based on the basal suction feeding mechanism in this group of fishes, we hypothesized a hydraulic method of excavation. As expected, prey capture kinematics of R. bonasus show marked differences relative to other elasmobranchs, relating to prey excavation and use of the cephalic lobes (modified anterior pectoral fin extensions unique to derived myliobatiform rays). Prey are excavated by repeated opening and closing of the jaws to fluidize surrounding sand. The food item is then enclosed laterally by the depressed cephalic lobes, which transport it toward the mouth for ingestion by inertial suction. Unlike in most sharks, upper jaw protrusion and mandibular depression are simultaneous. During food capture, the ray's spiracle, mouth, and gill slit movements are timed such that water enters only the mouth (e.g., the spiracle closes prior to prey capture and reopens immediately following). Indigestible parts are then hydraulically winnowed from edible prey portions, by mouth movements similar to those used in excavation, and ejected through the mouth. The unique sensory/manipulatory capabilities of the cephalic lobes, as well as the cownose ray's hydraulic excavation/winnowing behaviors and suction feeding, make this species an effective benthic predator, despite its epibenthic lifestyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号