首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨玉盛 《生态学报》2017,37(1):1-11
随着全球环境变化和人类活动对生态系统影响的日益加深,生态系统结构和功能发生强烈变化,生态系统提供各类资源和服务的能力在显著下降。在这种背景下,全面认识生态系统的结构功能与全球环境变化的关系已成为当前生态学研究的热点之一。本文综述了全球环境变化对典型生态系统(包括森林生态系统、河口湿地生态系统、城市生态系统)影响以及全球环境变化适应的研究现状,分析研究面临的困难及挑战。在此基础上,提出对未来研究发展趋势的展望。在森林生态系统与全球环境变化研究上,未来应重视能更好模拟现实情景的、多因子、长期的全球环境变化控制试验,并注重不同生物地球化学循环之间的耦合作用。在湿地生态系统与全球环境变化研究上,未来应加强氮沉降、硫沉降及盐水入侵对湿地生态系统碳氮循环的影响,明晰滨海湿地的蓝碳功能,加强极端气候和人类干扰影响下湿地生态系统结构和功能变化及恢复力的研究。在城市生态系统与全球环境变化研究上,未来应深化城市生物地球化学循环机制研究,实现城市生态系统的人本需求侧重与转向,并开展典型地区长期、多要素综合响应研究。在全球环境变化适应研究上,未来应构架定量化、跨尺度的适应性评价体系,加强典型区域/部门的适应性研究以及适应策略实施的可行性研究,注重适应与减缓对策的关联研究及实施的风险评估。期望本综述为我国生态系统与全球环境变化研究提供一些参考。  相似文献   

2.
Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which could contribute to population declines, especially in times of energy shortage.  相似文献   

3.
Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.  相似文献   

4.
There is an increasing worldwide concern about the problem of dealing with the waste electrical and electronic equipment (WEEE), given the high volume of appliances that are disposed of every day. In this article, an environmental evaluation of WEEE is performed that combines life cycle assessment (LCA) methodology and multivariate statistical techniques. Because LCA handles a large number of data in its different phases, when one is trying to uncover the structure of large multidimensional data sets, multivariate statistical techniques can provide useful information. In particular, principal‐component analysis and multidimensional scaling are two important dimension‐reducing tools that have been shown to be of help in understanding this type of complex multivariate data set. In this article, we use a variable selection method that reduces the number of categories for which the environmental impacts have to be computed; this step is especially useful when the number of impact categories or the number of products or processes to benchmark increases. We provide a detailed illustration showing how we have used the proposed approach to analyze and interpret the environmental impacts of different domestic appliances.  相似文献   

5.
Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission.  相似文献   

6.
Kreisman LS  Cobb BA 《Glycobiology》2012,22(8):1019-1030
Microbial immune evasion can be achieved through the expression, or mimicry, of host-like carbohydrates on the microbial cell surface to hide from detection. However, disparate reports collectively suggest that evasion could also be accomplished through the modulation of the host glycosylation pathways, a mechanism that we call the "Glyco-Evasion Hypothesis". Here, we will summarize the evidence in support of this paradigm by reviewing three separate bodies of work present in the literature. We review how infection and inflammation can lead to host glycosylation changes, how host glycosylation changes can increase susceptibility to infection and inflammation and how glycosylation impacts molecular and cellular function. Then, using these data as a foundation, we propose a unifying hypothesis in which microbial products can hijack host glycosylation to manipulate the immune response to the advantage of the pathogen. This model reveals areas of research that we believe could significantly improve our fight against infectious disease.  相似文献   

7.
Linear Programming (LP) is a powerful mathematical technique that can be used as a tool in Life Cycle Assessment (LCA). In the Inventory and Impact Assessment phases, in addition to calculating the environmental impacts and burdens, it can be used for solving the problem of allocation in multiple-output systems. In the Improvement Assessment phase, it provides a systematic approach to identifying possibilities for system improvements by optimising the system on different environmental objective functions, defined as burdens or impacts. Ultimately, if the environmental impacts are aggregated to a single environmental impact function in the Valuation phase, LP optimisation can identify the overall environmental optimum of the system. However, the aggregation of impacts is not necessary: the system can be optimised on different environmental burdens or impacts simultaneously by using Multiobjective LP. As a result, a range of environmental optima is found offering a number of alternative options for system improvements and enabling the choice of the Best Practicable Environmental Option (BPEO). If, in addition, economic and social criteria are introduced in the model, LP can be used to identify the best compromise solution in a system with conflicting objectives. This approach is illustrated by a real case study of the borate products system. An erratum to this article is available at .  相似文献   

8.
Seasonality and the dynamics of infectious diseases   总被引:8,自引:1,他引:7  
Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host–pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite–host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions.  相似文献   

9.
Coral reefs are among the most biologically diverse and economically important ecosystems on the planet. The deposition of massive calcium carbonate skeletons (biomineralization or calcification) by scleractinian corals forms the coral reef framework/architecture that serves as habitat for a large diversity of organisms. This process would not be possible without the intimate symbiosis between corals and photosynthetic dinoflagellates, commonly called zooxanthellae. Carbonic anhydrases play major roles in those two essential processes of coral’s physiology: they are involved in the carbon supply for calcium carbonate precipitation as well as in carbon-concentrating mechanisms for symbiont photosynthesis. Here, we review the current understanding of diversity and function of carbonic anhydrases in corals and discuss the perspective of theses enzymes as a key to understanding impacts of environmental changes on coral reefs.  相似文献   

10.
11.
To make appropriate regulatory policy decisions, the potential social and economic impacts of the policy must first be established. For environmental and occupational agents, social and economic impacts are derived from animal toxicology and, when available, human studies that serve as the base for risk-benefit analysis (RBA). Because immune function is associated with resistance to infectious disease, developing RBA for data derived from immunotoxicology studies will require determining the changes in the frequency or severity of infectious disease resulting from an exposure. Fortunately, considerable information is readily available for identifying the frequency of infectious diseases in the general population and its social and economic impacts and to assist the risk assessor when conducting RBA for immunotoxicology endpoints. The following is a brief review describing some issues in using immunotoxicity data when conducting RBA. It presents an economic methodology to determine the economic impacts of infectious diseases to society, sources where these types of information are available, and an example using a specific infectious disease, otitis media.  相似文献   

12.
During the past century, humans have gained more years of average life expectancy than in the last 10,000 years; we are now living in a rapidly ageing world. The sharp rise in life expectancy, coupled to a steady decline in birth rates in all developed countries, has led to an unprecedented demographic revolution characterized by an explosive growth in the number and proportion of older people. Ageing is a complex process that negatively impacts the development of the immune system and its ability to function. Progressive changes in the T and B cell systems over the life span have a major impact on the capacity to respond to immune challenge. These cumulative age-associated changes in immune competence are termed Immunosenescence: some immunological parameters are commonly notably reduced in the elderly and, reciprocally good function is tightly correlated to health status. Hence, a better understanding of Immunosenescence and the development of new strategies to counteract it are essential for improving the quality of life of the elderly population.  相似文献   

13.
The innate immune system provides defence against parasites and pathogens. This defence comes at a cost, suggesting that immune function should exhibit plasticity in response to variation in environmental threats. Density-dependent prophylaxis (DDP) has been demonstrated mostly in phase-polyphenic insects, where larval group size determines levels of immune function in either adults or later larval instars. Social insects exhibit extreme sociality, but DDP has been suggested to be absent from these ecologically dominant taxa. Here we show that adult bumble-bee workers (Bombus terrestris) exhibit rapid plasticity in their immune function in response to social context. These results suggest that DDP does not depend upon larval conditions, and is likely to be a widespread and labile response to rapidly changing conditions in adult insect populations. This has obvious ramifications for experimental analysis of immune function in insects, and serious implications for our understanding of the epidemiology and impact of pathogens and parasites in spatially structured adult insect populations.  相似文献   

14.
Asthma is caused by both heritable and environmental factors. It has become clear that genetic studies do not adequately explain the heritability and susceptibility to asthma. The study of epigenetics, heritable non-coding changes to DNA may help to explain the heritable component of asthma. Additionally, epigenetic modifications can be influenced by the environment, including pollution and cigarette smoking, which are known asthma risk factors. These environmental trigger-induced epigenetic changes may be involved in skewing the immune system towards a Th2 phenotype following in utero exposure and thereby enhancing the risk of asthma. Alternatively, they may directly or indirectly modulate the immune and inflammatory processes in asthmatics via effects on treatment responsiveness. The study of epigenetics may therefore play an important role in our understanding and possible treatment of asthma and other allergic diseases. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

15.
Asthma is caused by both heritable and environmental factors. It has become clear that genetic studies do not adequately explain the heritability and susceptibility to asthma. The study of epigenetics, heritable non-coding changes to DNA may help to explain the heritable component of asthma. Additionally, epigenetic modifications can be influenced by the environment, including pollution and cigarette smoking, which are known asthma risk factors. These environmental trigger-induced epigenetic changes may be involved in skewing the immune system towards a Th2 phenotype following in utero exposure and thereby enhancing the risk of asthma. Alternatively, they may directly or indirectly modulate the immune and inflammatory processes in asthmatics via effects on treatment responsiveness. The study of epigenetics may therefore play an important role in our understanding and possible treatment of asthma and other allergic diseases. This article is part of a Special Issue entitled: Biochemistry of Asthma.  相似文献   

16.
This study analyzed the environmental impacts of packaging‐derived changes in food production and consumer behavior to assist packaging designers in making environmentally conscious decisions. Packaging can be functionalized to prevent food loss and waste (FLW), for example, extending the expiration date and apportioning the package size, but it can generate additional environmental impacts from changes in food and packaging production. Previous studies assessed additional impacts from packaging production; however, the effects of packaging functionalization are yet to be connected with food production and consumer behavior. To examine the effect of functionalization on these aspects, we analyzed packaging‐derived changes in food production for milk and cabbage products. The case study compared products with functionalized packaging that permits a longer expiration date or a smaller portion size to their base‐case products. Our results showed that the packaging‐derived changes increased the global warming potential (GWP) of food production more than other processes did. Thus, changes in food production weakened the effectiveness of the packaging functionalization to decrease the GWP. Moreover, the analysis of consumer behavior scenarios showed that consumers’ perception of the expiration date decisively influences the effectiveness of packaging functionalization. When consumers discarded food after the expiration date, provided they consumed in small quantities, the packaging functionalization reduced FLW. From the scenario analysis, we identified appropriate combinations of packaging functionalization and consumer behaviors to effectively decrease total GWP. With our expanded analysis, packaging designers can understand the effectiveness of their decisions on the product life cycle in reducing FLW and environmental impacts.  相似文献   

17.
井新  蒋胜竞  刘慧颖  李昱  贺金生 《生物多样性》2022,30(10):22462-1603
气候变化与生物多样性丧失是人类社会正在经历的两大变化。气候变化影响生物多样性的方方面面, 是导致生物多样性丧失的一个主要驱动因子; 反过来, 生物多样性丧失会加剧气候变化。因此, 阻止甚至扭转气候变化和生物多样性丧失是当前人类社会亟需解决的全球性问题,但我们对气候变化与生物多样性之间的复杂关系和反馈机制尚缺乏清晰认识。本文总结了近年气候变化与生物多样性变化的研究进展, 重点概述了不同组织层次、空间尺度和维度的生物多样性对气候变化的响应和反馈等相关领域的研究进展和存在的主要问题。结果发现多数研究关注气候变化对生物多样性的直接影响, 涉及到生物多样性的不同组织层次、维度和营养级, 但针对气候变化间接影响的研究仍然较少, 机理研究同样需要加强; 生物多样性对生态系统功能影响的环境依赖和尺度推演、生物多样性对生态系统多功能性的作用机理和量化方法是当前研究面临的挑战; 生物多样性对生态系统响应气候变化的作用机制尚无统一的认识; 生物多样性对气候变化的正、负反馈效应是国内外研究的盲点。最后, 本文展望了未来发展方向和需要解决的关键科学问题, 包括多因子气候变化对生物多样性的影响; 减缓和适应气候变化的措施如何惠益于生物多样性保护; 生物多样性与生态系统功能的理论如何应用到现实世界; 生物多样性保护对实现碳中和目标的贡献。  相似文献   

18.
Microbes collectively shape their environment in remarkable ways via the products of their metabolism. The diverse environmental impacts of macro-organisms have been collated and reviewed under the banner of ‘niche construction’. Here, we identify and review a series of broad and overlapping classes of bacterial niche construction, ranging from biofilm production to detoxification or release of toxins, enzymes, metabolites and viruses, and review their role in shaping microbiome composition, human health and disease. Some bacterial niche-constructing traits can be seen as extended phenotypes, where individuals actively tailor their environment to their benefit (and potentially to the benefit of others, generating social dilemmas). Other modifications can be viewed as non-adaptive by-products from a producer perspective, yet they may lead to remarkable within-host environmental changes. We illustrate how social evolution and niche construction perspectives offer complementary insights into the dynamics and consequences of these traits across distinct timescales. This review highlights that by understanding the coupled bacterial and biochemical dynamics in human health and disease we can better manage host health.  相似文献   

19.
Jason D. Stockwell  Jonathan P. Doubek  Rita Adrian  Orlane Anneville  Cayelan C. Carey  Laurence Carvalho  Lisette N. De Senerpont Domis  Gaël Dur  Marieke A. Frassl  Hans‐Peter Grossart  Bas W. Ibelings  Marc J. Lajeunesse  Aleksandra M. Lewandowska  María E. Llames  Shin‐Ichiro S. Matsuzaki  Emily R. Nodine  Peeter Nges  Vijay P. Patil  Francesco Pomati  Karsten Rinke  Lars G. Rudstam  James A. Rusak  Nico Salmaso  Christian T. Seltmann  Dietmar Straile  Stephen J. Thackeray  Wim Thiery  Pablo Urrutia‐Cordero  Patrick Venail  Piet Verburg  R. Iestyn Woolway  Tamar Zohary  Mikkel R. Andersen  Ruchi Bhattacharya  Josef Hejzlar  Nasime Janatian  Alfred T. N. K. Kpodonu  Tanner J. Williamson  Harriet L. Wilson 《Global Change Biology》2020,26(5):2756-2784
In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.  相似文献   

20.
There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from ?75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号