首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptation of the gypsy moth to an unsuitable host plant   总被引:2,自引:0,他引:2  
The pattern of adaptation with regard to life history traits and traits thought to be important in feeding habits of caterpillars in two populations of the gypsy moth (Lymantria dispar L.; Lepidoptera: Lymantriidae) originating from the locust tree (Robinia pseudoacacia; Fabaceae) and oak (Quercus petrea; Fagaceae) forests were investigated in the laboratory. The Robinia population has experienced unsuitable locust tree leaves as an exclusive food resource for more than 40 years. Since Quercus species are the principal host plants of the gypsy moth, the specific objectives of this study have been to measure the extent of differentiation between ancestral and derived populations in several life history traits (egg-to-adult viability, duration of larval and pupal stages, and pupal weight) and nutritional indices – relative growth rate (RGR), relative consumption rate (RCR), assimilation efficiency (AD), gross growth efficiency (ECI), and net growth efficiency (ECD). Significant differences between the Quercus and Robinia populations were detected in pupal duration, RGR, RCR, and AD. The presence of a significant population × host interaction in traits such as preadult viability, duration of pupal stage, RGR, and ECI suggests that adaptation of the gypsy moth to the unsuitable host might be ongoing. Using a full-sib design, we screened for genetic variation in life history traits within both populations, and examined the genetic correlations of performance across oak and locust leaves within both populations. The genetic variances for analyzed life history traits were lower under conditions that are commonly encountered in nature. Our data show that positive cross-host genetic correlations preponderate within both populations.  相似文献   

2.
In this study we examined the influences that differing life history strategies and population structures at the time of pesticide exposure have on population susceptibility to pesticides. We used life table data and a matrix projection model to incorporate combinations of mortality (lethal effect) and reductions in fecundity (sublethal effect) into estimates of intrinsic population growth rates (r) for a predator, the seven-spot lady beetle, Coccinella septempunctata L., and its prey, the pea aphid, Acyrthosiphon pisum Harris, and an aphid parasitoid, Diaeretiella rapae (M’Intosh). All three species exhibited differences in key life history variables. The aphid had the highest r and shortest generation time, the ladybeetle had the lowest r and longest generation, while the parasitoid exhibited intermediate life history characteristics. When the model was run with populations started as neonates (aphids) or eggs (lady beetle, parasitoid) for each species, ladybeetle populations were much more susceptible than either aphid or parasitoid populations 30 days after simulated exposure to a pesticide. For example, 50% mortality and a 50% reduction in fecundity resulted in a population headed toward extinction (negative r) for the ladybeetle while the parasitoid population grew exponentially (positive r) even after sustaining 70% mortality and a 70% reduction in fecundity. The aphid species maintained exponential growth after sustaining 80% mortality and an 80% reduction in fecundity. Thus, differences in life history variables accounted for the greater susceptibility of the ladybeetle to a pesticide than its aphid prey or the parasitoid over a set time interval. These differences in susceptibility were greatly reduced when the model was run starting with a mixed age/stage population (the stable age distribution) for each species indicating that population structure at the time of pesticide exposure plays a critical role in population susceptibility. These results suggest that life history attributes as well as population structure at the time of pesticide exposure both play a major role in population susceptibility to pesticides, highlighting the need to explicitly consider differences in life history variables among species when calculating compatibility of pesticides and biological control agents as well as the population structure of beneficial species at the time of pesticide application.  相似文献   

3.
《Aquatic Botany》1987,29(2):139-156
Plant numbers, plant size, number and length of primary laterals, reproduction, growth rates and turnover rates were recorded for an intertidal and a deep-water (30 m depth) population of Sargassum polyceratium Montagne at Curaçao, Netherlands Antilles, for 1.5 years. Both populations showed distinct seasonal variations in biomass and growth rates, with maxima in late summer-early autumn and minima in winter. The observed fluctuations were probably amplified by a severe autumn storm that significantly reduced biomass in both populations at the end of the first year. The main differences between the populations were a more compact growth form and higher growth rates and turnover rates of primary laterals in the intertidal population.  相似文献   

4.
Summary A mark-recapture study was carried out in sympatric populations of Lacerta agilis and Lacerta vivipara in the Netherlands from 1976 to 1982. In most years the age structure of both populations was pyramidal. For both species life expectation of females was higher and on average they did live longer. Hence the sex ratio for adults deviated significantly from 1.0 in favour of females. Maximum age for Lacerta vivipara was 8 years (female) and for Lacerta agilis 12 years (male). The density of both species fluctuated around 100/ha. The biomass of Lacerta agilis was twice that of Lacerta vivipara. In Lacerta vivipara the 3rd and 4th calendar year class supplied 78% of total net reproduction; in Lacerta agilis the 4th, 5th, and 6th calendar year classes supplied 68%. In both populations the population replacement rate was 2. Population turnover time was 4.83 years for Lacerta agilis and 2.81 for Lacerta vivipara. The life history strategy of the Lacerta vivipara population is compared with six other European Lacertavivipara populations.  相似文献   

5.
Oreina elongata is a chemically defended leaf beetle. If its food plant contains pyrrolizidine alkaloids, all life stages of the beetle sequester them. However, one of the two known host-plant genera does not contain these alkaloids. In this paper we compare the adult feeding preference and larval performance of two populations, one feeding on Adenostyles alliariae (which contains alkaloids) and one on Cirsium spinosissimum (devoid of alkaloids). Adults of the population living on C. spinosissimum preferred the alkaloid-containing A. alliariae, while adults of the population feeding on A. alliariae showed no preference for either plant. On the other hand, larval growth of both populations is better on C. spinosissimum, without alkaloids. This is especially so in the population that never naturally encounters pyrrolizidine alkaloids; the population living on A. alliariae is apparently better adapted to its host's secondary compounds. The data are discussed in terms of cost of defense and trade-offs between growth and defense.  相似文献   

6.
The distribution and stage composition of Calanoidescarinatus (Kroyer) are described together with changes in protein and lipid content, respiration rate and gonad development in copepodite stages IV and V (CV) and adults in the Northern Benguela current (17°S, 23°S and 25°S).During active upwelling the population consisted of two parts: the surface part over the shelf was represented by all development stages, while the deep part offshore was dominated (90–95%) by diapausal CVs. In the surface CVs the surplus assimilated energy was allocated to structural growth and maturation or to synthesis of reserve lipids. CVs with large oil sacs and high lipid content descended into deeper layers and formed diapausal stock; they were characterized by a dramatic decrease of respiration rate. Increase of gonad size in association with decrease of oil sac volume in diapausal CV suggests that reserve lipids were expended not only for respiration but also for gonad development. The moulting of dispausal CVs into adults took place in deep water.These results are discussed in relation to the life cycle of the C. carinatus population and the factors causing the formation and termination of the diapausal phase.  相似文献   

7.
We studied the demography of Viola elatior, V. pumila, and V. stagnina, three rare and endangered Central European floodplain species, to (i) analyse variation in life-cycles among congeners and between regions (Dyje-Morava floodplains, Czech Republic; Upper Rhine, Germany), (ii) to define sensitive stages in the life-cycles, and (iii) to identify possible threats for population viability and species conservation. Matrix models were based on the fate of marked individuals from a total of 27 populations over two years. We analysed population growth rate (λ), stage distribution, net reproductive rate (R 0), generation time, age at first reproduction, and elasticity and calculated a life table response experiment (LTRE). Most populations were declining and λ did not differ between species or regions during the observed interval. Despite higher probabilities for survival and flowering in the Dyje populations, R 0 was higher in the Rhine populations. Also other demographic traits showed consistent differences between regions and/or species. Complex life-cycles and large variation in λ precluded unequivocal identification of sensitive stages or vital rates for conservation. Variation between regions may be a consequence of differences in habitat quality. Our results suggest that deterministic processes such as reduced management, succession, habitat destruction, and lack of disturbance through reduced or eliminated flooding present the strongest threat for the viability and persistence of populations of the three floodplain violets as compared with stochastic processes. However, the persistent seed bank of the species may buffer populations against environmental variation and represents a reservoir for recovery after resumption of suitable land-use management.  相似文献   

8.
Two populations of the piscivorous fish Gobiomorus dormitor (the guabina) were examined in two separate crater lakes in Nicaragua, Central America. At Lake Apoyo, G. dormitor were introduced in May 1991 by local fishermen and have invaded successfully; at Lake Xiloá, the population is naturally occurring. To provide baseline life history data for G. dormitor in both lakes and to test hypotheses related to population growth and invasion success, this study aimed to (1) document and define the population growth and depth distribution of the fish through video transects in Lake Apoyo; (2) compare diet composition between lakes; and (3) compare life history parameters between lakes, including relative growth rates and reproduction. Videotaped transect studies, designed originally to examine cichlid breeding, began in both lakes in 1990 and have documented the subsequent increase of G. dormitor. Yearly means generally fit the exponential growth model. G. dormitor foraged mainly in shallow waters in Lake Apoyo and preyed mostly upon the atherinid Melaniris cf. sardina throughout seasons. In Lake Xiloá, cichlid fry constituted the majority of the diet overall and cannibalism was more common, although this trend varied with the cichlid breeding season. Relative growth rates were significantly different, based on otolith mass regressions on standard length. Lake Apoyo G. dormitor generally behaved as a successful invading species, displaying exponential growth, year-round reproduction, and higher foraging success than the natural population of Lake Xiloá. Further research is planned to explore the G. dormitor invasion when the population becomes integrated into the community.  相似文献   

9.
The toxicity of spinosad was evaluated using the RaPID Assay® Spinosad immunosorbent assay in different developmental stages of the parasitoid, Hyposoter didymator, and in its host, fourth-instar larvae of the cotton leafworm Spodoptera littoralis. Spinosad was applied directly to pupae and adults of H. didymator (ingestion or topical application) or to the immature stages of the parasitoid via the host larvae. Low amounts of spinosad were recovered from S. littoralis host larvae after topical treatment, and the compound was mainly retained in the hemolymph. Amounts of spinosad detected in third-instar larvae of H. didymator, pulled out from the hemolymph of parasitized S. littoralis larvae, were 85 pg (3.57 ng a.i./g body weight) in dead larvae, and 82 pg (3.42 ng a.i./g body weight) in alive individuals. After topical treatment of H. didymator cocoons, most of the compound was retained in the silken cocoon, preventing contamination of the pupa. Also in the parasitoid adults, relatively low amounts of spinosad were accumulated in the body overall, but half of all the insecticide recovered was found in the ovaries. The kinetic results obtained help to better understand the toxicity of spinosad in the complex S. littoralis–H. didymator, and to ascertain the compatibility between spinosad and the parasitoid for optimizing the control of lepidopteran pests.  相似文献   

10.
The dynamics of plant populations in arid environments are largely affected by the unpredictable environmental conditions and are fine-tuned by biotic factors, such as modes of recruitment. A single species must cope with both spatial and temporal heterogeneity that trigger pulses of sexual and clonal establishment throughout its distributional range. We studied two populations of the clonal, purple prickly pear cactus, Opuntia macrocentra, in order to contrast the factors responsible for the population dynamics of a common, widely distributed species. The study sites were located in protected areas that correspond to extreme latitudinal locations for this species within the Chihuahuan Desert. We studied both populations for four consecutive years and determined the demographic consequences of environmental variability and the mode of reproduction using matrix population models, life table response experiments (LTREs), and loop and perturbation analyses. Although both populations seemed fairly stable (population growth rate, λ∼1), different demographic parameters and different life cycle routes were responsible for this stability in each population. In the southernmost population (MBR) LTRE and loop and elasticity analyses showed that stasis is the demographic process with the highest contributions to λ, followed by sexual reproduction, and clonal propagation contributed the least. The northern population (CR) had both higher elasticities and larger contributions of stasis, followed by clonal propagation and sexual recruitment. Loop analysis also showed that individuals in CR have more paths to complete a life cycle than those in MBR. As a consequence, each population differed in life history traits (e.g., size class structure, size at sexual maturity, and reproductive value). Numerical perturbation analyses showed a small effect of the seed bank on the λ of both populations, while the transition from seeds to seedlings had an important effect mainly in the northern population. Clonal propagation (higher survival and higher contributions to vital rates) seems to be more important for maintaining populations over long time periods than sexual reproduction.  相似文献   

11.
This paper examines the effect of inbreeding level of population on the magnitude of inbreeding depression expressed by comparing them between two cultured populations (A and B) in the hermaphroditic animal of the bay scallop Argopecten irradians irradians. Population A is expected to have less genetic variations and higher inbreeding level due to longer cultured history (20 generations) and less “ancestral” individuals (26 individuals) than population B due to shorter cultured history (4 generations) and more “ancestral” individuals (406 individuals). Two groups within each population were produced, one using self-fertilization and one using mass-mating within the same population. Selfed offspring (AS and BS) from two populations both had lower fitness components than their mass-mated counterparts (AM and BM) and exhibited inbreeding depression for all examined traits, e.g. lower hatching, less viability and slower growth, indicating that inbreeding depression is a common feature in this animal. Fitness components in all traits of offspring from population A significantly differed those from population B and the magnitude of inbreeding depression for all traits in population A with higher inbreeding level was significantly smaller than that in population B with lower inbreeding level, indicating that both fitness components and magnitude of inbreeding depression were significantly affected by inbreeding level of populations and genetic load harbored in population A may be partially purged through inbreeding. Moreover, the magnitude of inbreeding depression in the two populations both varied among traits and life history stages. The present results support the partial-dominance hypothesis of inbreeding depression.  相似文献   

12.
Introductions of exotic species pose a significant threat to the persistence of many native populations, including many inland fishes. In 1994, piscivorous lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake, Yellowstone National Park, Wyoming, USA, one of the last strongholds of the native Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). Predation by lake trout is expected to lead to a substantial decline in the native cutthroat trout population, which may have significant negative consequences for terrestrial predators that depend on cutthroat trout for prey and for the recreational fishery of the Park. We developed a matrix demographic model for the cutthroat trout population in Yellowstone Lake to identify the life stages that are most critical for understanding population dynamics. Parameter estimates (vital rates) were manipulated to explore the possible consequences of lake trout invasion. Comparisons of our results with current estimates of population trend and age structure suggested that our model reflected current conditions of the system. Elasticity analysis of the model revealed that population growth was most sensitive to annual survival of young trout, the group that is expected to be most vulnerable to lake trout predation. Projection of our deterministic model suggested that, in addition to a decline in abundance of cutthroat trout, the effects of lake trout may be manifest as changes in age and breeding structure of the population. Simulations of a stochastic version of the model indicated that a 60% or greater decline in the cutthroat trout population could be expected within 100 years if the lake trout population were permitted to grow uncontrolled. However, an effective control strategy that prevented the establishment of a large population of lake trout substantially reduced population decline, although the reduction in the availability of adult trout to terrestrial predators and anglers may be still be substantial (20–40%). In addition to current control activities in place in the Park, we recommend a renewed emphasis on understanding and monitoring juvenile life stages of cutthroat trout. Our results demonstrate the value of existing data sets for developing models to estimate the potential impact of biological invasions on the management and conservation of native populations, especially when opportunities and resources for additional empirical studies are limited.  相似文献   

13.
Do trade-offs between growth and reproduction differ between an invasive and noninvasive plant species and how do such trade-offs relate to population demographics? To help address these questions, we compared demographics for an invasive plant species, Rubus discolor, with a noninvasive congener, R. ursinus, in several populations of varying density. Removal of floral buds from reproductive canes increased the size of juvenile canes that arose from clonal sprouting in R. ursinus, suggesting a trade-off between current reproduction and growth. Removal of floral buds had no effect on growth of R. discolor. R. ursinus displayed trade-offs between reproduction (sexual and vegetative) and future growth based on negative correlations between leaf area production and both clonal sprouting and seedling production during the previous year. R. discolor did not exhibit these trade-offs. Both species had high population growth rates in low-density populations, but exhibited little or no growth in high-density populations. A life table response experiment was used to determine the underlying cause for the effect of density on population growth. For R. ursinus, lack of population growth in high-density populations was due primarily to increased mortality of clonally sprouting canes, while for R. discolor, it was due to decreased clonal cane production. Elasticity analysis revealed that clonal growth was more important than sexual reproduction for population growth of both species. However, elasticity values for sexual reproduction in R. discolor were greater in high- than low-density populations. This suggests an increased reliance on sexual reproduction in populations that had reached stable sizes, which could increase the capacity of R. discolor to disperse to new sites. Elasticity analyses were also used to simulate the efficacy of various control strategies for R. discolor. Control of this species could be attained by reducing clonal production within existing populations while reducing seed production to limit establishment of new populations.  相似文献   

14.
Field experiments and wild population monitoring have been performed to study the population biology of the rare long-lived Kosteletzkya pentacarpos (Malvaceae) in the Llobregat delta (Catalonia, NE Spain). Field experiments explored the fate of seeds in soil at different depths, seedling emergence, and seedling survival, growth and flowering with and without canopy cover during the first 2 years of life. They also were used to ascertain the size-related pattern of seedling survivorship and flowering. Field data concerning mortality, growth and fecundity of adult plants were collected yearly in three wild populations for 7–9 years. In old adults (reproducing long before the beginning of the study), ANOVAR tests were performed to compare maximum diameter, total and fertile shoots, and viable seeds per plant between years and populations. New adults (starting flowering the first year of study or in subsequent years) were used to explore, using linear and polynomial regressions, the association of RGR and both total and fertile shoot production with (i) plant size (maximum basal diameter or its logarithm); (ii) plant age (years in adult stage); and (iii) plant age after removing the effect of size and year-to-year fluctuations. In this case, we examined the age-related pattern of the residuals obtained from the regressions with size and year. The study identified the following main demographic features of K. pentacarpos: (i) transient, shallow soil seed bank; (ii) shade tolerance of seedling emergence; (iii) canopy-facilitation of seedling survival and bolting during the first two years of life; (iv) size-related pattern for seedling survivorship but not flowering; (v) exclusive dependence on a fluctuating seed output for reproduction; (vi) rapid adult growth; and (vii) high adult longevity but (viii) rapid depletion of fecundity with age. Seed output was highly constrained by mining insects. The changing size-structure and the decreasing reproductive success of old adults in several populations suggest that K. pentacarpos might undergo a dynamics of population establishment and extinction in the Ricarda marshes. Because of fluctuating reproduction and the lack of a persistent seed bank, the conservation of standing adult populations appears to be a key factor to ensure the persistence of the species.  相似文献   

15.
Both phenotypic plasticity and local genetic adaptation may contribute to a species’ ability to inhabit different environmental conditions. While phenotypic plasticity is usually considered costly, local adaptation takes generations to respond to environmental change and may be constrained by strong gene flow. The majority of marine species have complex life-cycles with pelagic stages that might be expected to promote gene flow and plastic responses, and yet several notable examples of local adaptation have been found in species with broadcast larvae. In the ascidian, Ciona intestinalis (Linnaeus, 1767),—a common marine species with broadcast spawning and a short larval stage—previous studies have found marked differences in salinity tolerance of early life-history stages among populations from different salinity regimes. We used common-garden experiments to test whether observed differences in salinity tolerance could be explained by phenotypic plasticity. Adult ascidians from two low salinity populations [2–5 m depth, ~25 practical salinity units (PSU)], and two full salinity populations (25–27 m depth, ~31 PSU) were acclimated for 2–4 weeks at both 25 and 31 PSU. Gametes were fertilized at the acclimation salinities, and the newly formed embryos were transferred to 10 different salinities (21–39 PSU) and cultured to metamorphosis. Adult acclimation salinity had an overriding and significant effect on larval metamorphic success: tolerance norms for larvae almost fully matched the acclimation salinity of the parents, independent of parental origin (deep or shallow). However we also detected minor population differences that could be attributed to either local adaptation or persistent environmental effects. We conclude that differences in salinity tolerance of C. intestinalis larvae from different populations are driven primarily by transgenerational phenotypic plasticity, a strategy that seems particularly favourable for an organism living in coastal waters where salinity is less readily predicted than in the open oceans.  相似文献   

16.
Individuals in the vanguard of a species invasion face altered selective conditions when compared with conspecifics behind the invasion front. Assortment by dispersal ability on the expanding front, for example, drives the evolution of increased dispersal, which, in turn, leads to accelerated rates of invasion. Here I propose an additional evolutionary mechanism to explain accelerating invasions: shifts in population growth rate (r). Because individuals in the vanguard face lower population density than those in established populations, they should (relative to individuals in established populations) experience greater r-selection. To test this possibility, I used the ongoing invasion of cane toads (Bufo marinus) across northern Australia. Life-history theory shows that the most efficient way to increase the rate of population growth is to reproduce earlier. Thus, I predict that toads on the invasion front will exhibit faster individual growth rates (and thus will reach breeding size earlier) than those from older populations. Using a common garden design, I show that this is indeed the case: both tadpoles and juvenile toads from frontal populations grow around 30 per cent faster than those from older, long established populations. These results support theoretical predictions that r increases during range advance and highlight the importance of understanding the evolution of life history during range advance.  相似文献   

17.
Twenty-eight populations of the rare medicinal plant Magnolia officinalis (Magnoliaceae) were sampled across its natural range, and inter-simple sequence repeats (ISSRs) markers were used to assess the genetic variation within and among populations. Twelve primer combinations produced a total of 137 unambiguous bands of which 114 (83.2%) were polymorphic. M. officinalis exhibited a relatively low genetic diversity at population level (the percentage of polymorphic loci PPB = 49.8%, Nei’s genetic diversity H = 0.194, Shannon’s information index I = 0.286). However, the genetic diversity at species level was relatively high (PPB = 83.2%; H = 0.342; I = 0.496). The coefficient of gene differentiation (GST, 42.8%) and the results of analysis of molecular variance (AMVOA) indicated that genetic differentiation occurred mainly within populations. The estimated gene flow (Nm) from GST was 0.669. It indicated that the fragmentation and isolation of populations might result from specific evolutionary history and anthropogenic activity. Genetic drift played a more important role than gene flow in the current population genetic structure of Mofficinalis. Conservation strategies for this rare species are proposed based on the genetic data.  相似文献   

18.
Imbalanced biomass allocation patterns in emergent aquatic plants to above and below-ground structures as a response to climatic variations and water depth were investigated on the basis of observation of three stable homogeneous populations established under different water regimes and climatic environments in Goulburn and Ourimbah, New South Wales, Australia, from August 2003 to December 2004. The growth of shoots depended on water inundation-drawdown patterns and climatic variations. Shoot density was greater in shallow water but with shorter shoot length and less maximum above-ground biomass density than for plant stands in deep water. Deep-water populations attained higher below-ground biomass with higher above to below-ground biomass ratio than for the shallow-water population. Translocation of carbohydrate reserves between above and below-ground organs in deep-water populations were mostly downward throughout the year whereas the depletion–recharge pattern varied seasonally in shallow water populations. Shoots of deep-water populations grew year-round whereas in shallow water shoots died off after recession of the water level with no re-growth afterward, showing that Eleocharis sphacelata is better adapted to deep water and is stressed under shallow-water conditions. A mathematical model was formulated to describe the growth patterns of E. sphacelata and subsequently to predict the effect of water depth on production. Model simulations are in satisfactory agreement with observed patterns of growth. The model also predicts that maximum production decreases sharply with increasing water depth.  相似文献   

19.
Some of the most basic questions of sea turtle life history are also the most elusive. Many uncertainties surround lifespan, growth rates, maturity and spatial structure, yet these are critical factors in assessing population status. Here we examine the keratinized hard tissues of the hawksbill (Eretmochelys imbricata) carapace and use bomb radiocarbon dating to estimate growth and maturity. Scutes have an established dietary record, yet the large keratin deposits of hawksbills evoke a reliable chronology. We sectioned, polished and imaged posterior marginal scutes from 36 individual hawksbills representing all life stages, several Pacific populations and spanning eight decades. We counted the apparent growth lines, microsampled along growth contours and calibrated Δ14C values to reference coral series. We fit von Bertalanffy growth function (VBGF) models to the results, producing a range of age estimates for each turtle. We find Hawaii hawksbills deposit eight growth lines annually (range 5–14), with model ensembles producing a somatic growth parameter (k) of 0.13 (range 0.1–0.2) and first breeding at 29 years (range 23–36). Recent bomb radiocarbon values also suggest declining trophic status. Together, our results may reflect long-term changes in the benthic community structure of Hawaii reefs, and possibly shed light on the critical population status for Hawaii hawksbills.  相似文献   

20.
Phelipanche ramosa (broomrape) is a root-holoparasitic angiosperm that attacks a wide number of annual crops. According to the host, the duration of its life cycle can range from 14 weeks (on tomato/tobacco) to 40 weeks (on oilseed rape). We conducted a cross-infection experiment to evaluate the intensity and kinetics of infection of broomrape populations. Two parasitic populations, P-long collected on oilseed rape and P-short collected on tobacco, were cultivated on two crops (their natural and outsider hosts). After, 4, 8, 12 and 16 weeks, the intensity of infection and the distribution of developmental stages (fixation to fructification) of broomrape were determined. The two broomrape populations showed distinct patterns of intensity and kinetics of infectivity. P-long showed a higher infection success in the early stages than P-short. Both parasitic populations showed a higher aggressiveness on their natural hosts than on outsider hosts. Only the P-short population completed its life cycle on the two hosts, and with similar development rates on both hosts, while the P-long population was unable to complete its life-cycle during the 16 weeks of the experiment. It is suggested that the shift in host specificity that allowed P. ramosa to infect oilseed rape in recent times has led to a divergence of pathovars having different life-cycle durations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号