首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The chloroform-methanol insoluble residue of adult rat brain myelin fractions (My-CMI) contains only 20% of protein but all myelin-associated glycoproteins (Z anetta et al ., 1977a). After solubilization in sodium dodecyl sulphate, these glycoproteins were separated by sequential affinity chromatography on 4 immobilized lectins. Ten fractions (9 of which contained only glycoproteins) were obtained. Glycoproteins added up to at least 25% of My-CMI proteins. Many minor glycoproteins were detected in the different fractions. However most of them appeared not to be intrinsic to myelin. On the contrary a major glycoprotein electrophoretic band, component A, appeared to be intrinsic to myelin although its presence also on oligodendrocyte plasma membrane cannot be excluded. Component A was tentatively identified with the'major myelin associated glycoprotein'described by QUARLES (1972, 1973 a, b ). It accounted for less than 0.4% of proteins and 8% of glycoproteins of myelin fractions and consisted of at least two'glycopolypeptides'which, both, bind to concanavalin A and to the Ulex europeus lectin. The other major glycoprotein, component B, did not bind to any of the lectins used and, thus, must have N -acetyl neuraminic acid as only terminal sugar. The separation of myelin-associated glycoproteins according to their affinity for lectins allowed a tentative identification of the lectin binding sites of myelin sheath.  相似文献   

2.
Abstract— β- N -Oxalyl- l -α, β-diaminopropionic acid (ODAP), the Lathyrus sativus neurotoxin can be detected in significant concentrations in the synaptosomal fractions isolated from young rat brain and adult monkey spinal cord, when these animals manifest neurological symptoms after ODAP administration. However, isolated synaptosomes fail to exhibit any transport system for ODAP uptake. ODAP administered in vivo appears to get localized in a population of synaptosomes which exhibit a high affinity uptake system for glutamate.  相似文献   

3.
The carbohydrate-binding specificity of Aleuria aurantia lectin was investigated by analyzing the behavior of a variety of fucose-containing oligosaccharides on an A. aurantia lectin-Sepharose column. Studies with complex-type oligosaccharides obtained from various glycoproteins by hydrazinolysis and their partial degradation fragments indicated that the presence of the alpha-fucosyl residue linked at the C-6 position of the proximal N-acetylglucosamine moiety is indispensable for binding to the lectin column. Binding was not affected by the structures of the outer chain moieties nor by the presence of the bisecting N-acetylglucosamine residue. These results indicated that A. aurantia lectin-Sepharose is useful for the group separation of mixtures of complex-type asparagine-linked sugar chains. Studies of glycosylated Bence Jones proteins indicated that this procedure is also applicable to intact glycoproteins. The behavior of oligosaccharides isolated from human milk and the urine of patients with fucosidosis indicated that the oligosaccharides with Fuc alpha 1----2Gal beta 1----4GlcNAc and Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups interact with the lectin, but less strongly than complex-type sugar chains with a fucosylated core. Lacto-N-fucopentaitol II, which has a Gal beta 1----3(Fuc alpha 1----4)GlcNAc group, interacts less strongly than the above two groups with the matrix. Oligosaccharides with Fuc alpha 1----2Gal beta 1----3GlcNAc and Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups showed almost no interaction with the matrix.  相似文献   

4.
Abstract: A neutral, mannose-rich, concanavalin A (Con A)-binding glycopeptide fraction was obtained by proteolytic digestion of defatted beef brain tissue. Hydrazinolysis followed by gel filtration of the reaction products provided three oligosaccharides. A portion of each oligosaccharide was treated by exhaustive digestion with α-mannosidase. Another portion was subjected to selective acetolysis of Manαl-6Man linkages, providing two fragments that were recovered by gel filtration. The structure of the intact oligosaccharides, as well as the fragments obtained by selective acetolysis and enzymatic treatment, were resolved by gas-liquid chromatographic-mass spectrometric analysis. The structures of the three oligosaccharides were: (a) Manαl-2Manαl-6(Manαl -3)Manαl-6(Manαl-2Manαl-2Manαl 3)Manβ1-4- N -acetylglucosamine (GlcNAc)β - 4N- acetylglucosaminitol (GlcOLNAc); (b) Manαl -2Manαl -6(Manαl -3)Manαl-6(Manαl-2Manαl-3)-Manβ1-4GlcNAcβl -4GlcOLNAc; and (c) Manαl -6(Manαl-3) Manαl - 6(Manαl - 3)Manβl -4GlcNAc-βl - 4GlcOLNAc. These structures account for 15–20% of the glycoprotein-carbohydrate of whole beef brain and most of the oligosaccharides that demonstrate a high affinity for Con A. In view of the large number of Con A-binding glycoproteins in brain tissue, it appears that many of these different glycoproteins must contain structurally identical oligosaccharides.  相似文献   

5.
The legume species of Cymbosema roseum of Diocleinae subtribe produce at least two different seed lectins. The present study demonstrates that C. roseum lectin I (CRL I) binds with high affinity to the "core" trimannoside of N-linked oligosaccharides. Cymbosema roseum lectin II (CRL II), on the other hand, binds with high affinity to the blood group H trisaccharide (Fucα1,2Galα1-4GlcNAc-). Thermodynamic and hemagglutination inhibition studies reveal the fine binding specificities of the two lectins. Data obtained with a complete set of monodeoxy analogs of the core trimannoside indicate that CRL I recognizes the 3-, 4- and 6-hydroxyl groups of the α(1,6) Man residue, the 3- and 4-hydroxyl group of the α(1,3) Man residue and the 2- and 4-hydroxyl groups of the central Man residue of the trimannoside. CRL I possesses enhanced affinities for the Man5 oligomannose glycan and a biantennary complex glycan as well as glycoproteins containing high-mannose glycans. On the other hand, CRL II distinguishes the blood group H type II epitope from the Lewis(x), Lewis(y), Lewis(a) and Lewis(b) epitopes. CRL II also distinguishes between blood group H type II and type I trisaccharides. CRL I and CRL II, respectively, possess differences in fine specificities when compared with other reported mannose and fucose recognizing lectins. This is the first report of a mannose-specific lectin (CRL I) and a blood group H type II-specific lectin (CRL II) from seeds of a member of the Diocleinae subtribe.  相似文献   

6.
Various monosaccharides and oligosaccharides were used to define the specificity of theButea frondosa lectin using the hapten inhibition technique of human erythrocyte agglutination. AlthoughB. frondosa lectin exhibited higher affinity forN-acetylgalactosamine, lactose andN-acetyllactosamine appeared to be relatively good inhibitors of haemagglutination. The behaviour ofN-acetyllactosamine-type oligosaccharides and glycopeptides on a column ofB. frondosa lectin immobilized on Sepharose 4B showed that the sugar-binding specificity of the lectin is directed towards unmaskedN-acetyllactosamine sequences. Substitution of theseN-acetyllactosamine sequences by sialic acid residues completely abolished the affinity of the lectin for the saccharides. The presence of one or several Fuc(1-3)GlcNAc groups completely inhibited the interaction between the glycopeptides and the lectin. Substitution of the core -mannose residue by an additional bisecting (1-4)GlcNAc residue decreases the affinity of the lectin for these structures as compared with the unsubstituted ones.  相似文献   

7.
During infection with the blood fluke Schistosoma mansoni, glycan motifs present on glycoproteins of the parasite’s eggs mediate immunomodulatory effects on the host. The recognition of these glycan motifs is primarily mediated by C-type lectin receptors on dendritic cells and other cells of the immune system. However, it is not yet known which individual glycoproteins interact with the different C-type lectin receptors, and which structural components are involved. Here we investigated the structural basis of the binding of two abundant egg antigens, kappa-5 and IPSE/α1, by the C-type lectin receptor dendritic cell-specific ICAM3-grabbing non-integrin, macrophage galactose-type lectin and mannose receptor. In the natural soluble form, the secretory egg glycoprotein IPSE/α1 interacts with dendritic cells mainly via mannose receptors. Surprisingly, in plate-based assays mannose receptors preferentially bound to mannose conjugates, while in cell-based assays, IPSE/α1 is bound via the fucosylated Galβ1-4(Fucα1-3)GlcNAc (LeX) motif on diantennary N-glycans. Kappa-5, in contrast, is bound by dendritic cells via all three C-type lectin receptors studied and for a minor part also via other, non-C-type lectin receptors. Kappa-5 interacts with macrophage galactose-type lectins via the GalNAcβ1-4GlcNAc antenna present on its triantennary N-glycans, as well as the GalNAcβ1-4(Fucα1-3)GlcNAc antennae present on a minor N-glycan subset. Dendritic cell-specific ICAM3-grabbing non-integrin binding of kappa-5 was mediated via the GalNAcβ1-4(Fucα1-3)GlcNAc antennae, whereas binding of mannose receptors may involve either GalNAcβ1-4(Fucα1-3)GlcNAc antennae or the fucosylated and xylosylated chitobiose core. This study provides a molecular and structural basis for future studies of the interaction between C-type lectin receptors and other soluble egg antigen glycoproteins and their effects on the host immune response.  相似文献   

8.
Abstract Guinea pig colonic epithelial cells release a soluble lectin capable of agglutinating numerous strains of Shigella and Escherichia coli as well as other bacteria. Using pure oligosaccharides and glycopeptides with well-defined structures to inhibit the agglutination of Shigella flexneri 1b by the soluble intestinal lectin, we have been able to demonstrate that the latter recognises different structural types. Inhibition by human milk glucoprotein glycopeptides with biantennary glycans of the N -acetyllactosamine type was dependent on the simultaneous presence of unsubstituted terminal non-reducing galactose residues and of a fucose residue α-1,6-linked to the asparagine-conjugated N -acetylglucosamine residue. Unsubstituted terminal non-reducing galactose was also determinant for inhibition by human milk oligosaccharides. Finally oligosaccharides possessing the Man (α1–2) Man structure inhibited more effectively than those with a Man(α1–3)Man sequence. The fact that these different structural motifs were all inhibitory raises the problem of the possible existence of a multispecific lectin or of several different lectins in the guinea pig colonic mucosa mediating bacterial adherence.  相似文献   

9.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

10.
A prominent lectin in the root tubers of Trichosanthes japonica was purified by affinity chromatography on a porcine stomach mucin-Sepharose column and termed TJA-II. The molecular mass of the native lectin was determined to be 64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and TJA-II was separated into two different subunits of 33 and 29 kDa in the presence of 2-mercaptoethanol. The respective subunits contained mannose, N-acetylglucosamine, fucose, and xylose. It was determined by equilibrium dialysis to have two equal binding sites per molecule, the association constant toward tritium-labeled Fuc alpha 1-->2Gal beta 1-->3GlcNAc beta 1-->3Gal beta 1-->4GlcOT being K alpha = 3.05 x 10(5) M-1. The precise carbohydrate binding specificity of immobilized TJA-II was studied using various tritium-labeled oligosaccharides. A series of oligosaccharides possessing Fuc alpha 1-->2Gal beta 1--> or GalNAc beta 1--> groups at their nonreducing terminals showed stronger binding ability than ones with Gal beta 1-->GlcNAc (Glc) groups, indicating that TJA-II fundamentally recognizes a beta-galactosyl residue and the binding strength increases on substitution of the hydroxyl group at the C-2 position with a fucosyl or acetylamino group. This lectin column is useful for fractionating oligosaccharides or glycoproteins containing blood group type 1H, type 2H, and Sd antigenic determinants.  相似文献   

11.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

12.
Abstract— Analysis of whole autopsy brain from a patient with fucosidosis (α-fucosidase deficiency) revealed minor storage of H-antigen glycolipid [Fuc (α, 1→2) Gal-GlcNAc-Gal-Glc-Ceramide] and a slightly abnormal ganglioside composition in the form of a two-fold elevation of GM1 and the presence of a fucose-containing glycolipid (a minor component) which co-migrated with GD1a. The major storage materials in fucosidosis brain were an oligosaccharide (Fuc-Gal-GlcNAc-Man[Fuc-Gal-GlcNAc-Man]-ManGlcNAc) and a disaccharide [Fuc(α, 1→6)-GlcNAc] in the approximate ratio of 5:1. Lesser amounts of a related oligosaccharide (Gal-GlcNAc-Man[Gal-GlcNAc-Man]-Man-GlcNAc) were isolated from the brain of patients with GM1-gangliosidosis (Types I and II) where the major storage material is known to be GM1-ganglioside (Gal (β, 1→3)GalNAc(β, 1→4) [NeuNAcf(α, 2→3) Gal(β, 1→4)Glc-Ceramide). Similarly, a related oligosaccharide (GlcNAc-Man [GlcNAc-Man]-Man-GlcNAc) was isolated from the brain of a patient with a total deficiency of N-acetyl-β-d -hexosaminidase (Sandhoff variant of GM2-gangliosidosis) where the major storage products are known to be GM2-ganglioside (GalNAc (β 1→4) [NeuNAc (α, 2→3)Gal(β, 1→4)Glc-Ceramine) and its asialo derivative. These studies indicate that glycoproteins containing at least 2 mol of l -fucose per oligosaccharide unit are normally catabolized in human brain. Further, it appears that such glycoproteins are initially catabolized by an endo-N-acetylglucosaminidase to release an oligosaccharide which is then degraded by the sequential action of exo-glycosidases.  相似文献   

13.
In the present study the structures of two glycopeptides (G1 and G1'), isolated from FU RvH(1)-b and two glycopeptides (G2 and G3), isolated from the structural subunit RvH(1) of Rapana venosa hemocyanin, were determined. To structurally characterize the site-specific carbohydrate heterogeneity and binding site of the N-linked glycopeptide(s), a combination of capillary reversed-phase chromatography and ion trap mass spectrometry was used. The amino acid sequences of glycopeptides G1 and G1' determined by Edman degradation and MS/MS sequencing demonstrated that the oligosaccharides are linked to N-glycosylation sites. Two peptides (a glycosylated (G1) and non-glycosylated one) were identified in this fraction and no linkage sites were observed in the latter one. Based on the sequencing of the glycosylated fractions G1, G1', G2 and G3, the carbohydrate structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)[Fuc(alpha1-6)]GlcNAc-R could be identified for glycopeptides G1 and G3, and only the typical core structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)GlcNAc-R was found for G1' and G2. The Fuc residue found in glycopeptides G1 and G3 is attached to N-acetyl-glucosamine of the carbohydrate core, as often found in other glycoproteins.  相似文献   

14.
Abstract: Glycoproteins were isolated from a rat brain synaptic junction fraction by affinity chromatography on Concanavalin A-agarose. The isolated glycoproteins were digested with pronase and radiolabeled with 125I-Bolton Hunter reagent, and 125I-Concanavalin A-binding glycopeptides were isolated by chromatography on Concanavalin A-agarose. Treatment of the 125I-Concanavalin A-binding glycopeptides with either α-mannosidase or endo-β- N -acetylglucosaminidase-C11 abolished their interaction with Concanavalin A. The pronase digest was reacted with endo-β-N-acetylglucosaminidase-C11 and released oligosaccharides were reduced with NaB3H4. Following affinity chromatography on Concanavalin A-agarose, Concanavalin A-binding [3H]oligosaccharides were chromatographed on Biogel P4. Two major oligosaccharides corresponding to standard carbohydrates containing eight and five mannose residues were identified. Treatment of these oligosaccharides with α-mannosidase converted them to smaller saccharides having a mobility on Biogel P4 columns equal to the standard disaccharide mannose-β-1-4- N '-acetylglucosamine. These results demonstrate that the Concanavalin A receptor activity associated with CNS synaptic junctions resides in asparaginelinked oligosaccharides of the high-mannose type.  相似文献   

15.
Fibromodulin from bovine articular cartilage has been subjected to lectin affinity chromatography by Sambucus nigra lectin which binds α(2-6)- linked N-acetylneuraminic acid, and the structure of the keratan sulphate in the binding and non-binding fractions examined by keratanase II digestion and subsequent high pH anion exchange chromatography. It has been confirmed that the keratan sulphate chains attached to fibromodulin isolated from bovine articular cartilage may have the chain terminating N-acetylneuraminic acid residue α(2-3)- or α(2-6)-linked to the adjacent galactose residue. Although the abundance of α(2-6)-linked N-acetylneuraminic acid (ca. 22%) is such that this could cap one of the four chains in almost all fibromodulin molecules, it was found that ca. 34% of the fibromodulin proteoglycan molecules from bovine articular cartilage were capped exclusively with α(2-3)-linked N-acetylneuraminic acid. The remainder of the fibromodulin proteoglycans, which bound to the lectin had a mixture of α(2-3)- and α(2-6)-linked N-acetylneuraminic acid capping structures. The keratan sulphates attached to fibromodulin molecules capped exclusively with α(2-3)- linked N-acetylneuraminic acid were found to have a higher level of galactose sulphation than those from fibromodulin with both α(2-3)- and α(2-6)-linked N-acetylneuraminic acid caps, which bound to the Sambucus nigra lectin. In addition, both pools contained chains of similar length (ca. 8–9 disaccharides). Both also contained α(1-3)-linked fucose, showing that this feature does not co-distribute with α(2-6)-linked N-acetylneuraminic acid, although these two features are present only in mature articular cartilage. These data show that there are discrete populations of fibromodulin within articular cartilage, which may have differing impacts upon tissue processes.  相似文献   

16.
A novel type of N-linked glycopeptides representing a major part of the glycans in human small intestinal epithelial cells from blood group A and O individuals were isolated by gel filtrations and affinity chromatography on concanavalin A-Sepharose and Bandeiraea simplicifolia lectin I-Sepharose. Sugar composition, methylation analysis, 1H NMR spectroscopy of the underivatized glycopeptides and FAB-mass spectrometry and electron impact-mass spectrometry of the permethylated glycopeptides indicated a tri- and tetra-antennary structure containing an intersecting N-acetylglucosamine and an alpha (1----6)-linked fucose residue in the core unit for the majority of the glycans. In contrast to most glycopeptides of other sources, the intestinal glycopeptides were devoid of sialic acid, but contained 6-7 residues of fucose. The outer branches contained the following structures: Fuc alpha 1-2Gal beta 1-3GleNAc beta 1- (H type 1) Fuc alpha 1-2Gal beta 1-4GleNAc beta 1- (H type 2) Gal beta 1-4 (Fuc alpha 1-3)GlcNAc beta 1- (X) Fuc alpha 1-2Gal beta 1-4(Fuc alpha 1-3)GleNAc beta 1- (Y) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-3GleNAc beta 1- (A type 1) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GleNAc beta 1- (monofucosyl A type 2) GalNAc alpha 1-3(Fuc alpha 1-2)Gal beta 1-4 (Fuc alpha 1-3)GlcNAc beta 1- (trifucosyl A type 2) The blood group determinant structures were mainly of type 2, whereas glycolipids from the same cells contained mainly type 1 determinants. The polyfucosylated glycans represent a novel type of blood group active glycopeptides. The unique properties of the small intestinal glycopeptides as compared with glycopeptides of other tissue sources may be correlated with the specialized functional properties of the small intestinal epithelial cells.  相似文献   

17.
A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.  相似文献   

18.
Abstract: Cultured PC12 pheochromocytoma cells were labeled with [3H]gIucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM ). The released complex carbohydrates include chromogranins, dopamine β-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(β l ± 3 )N-ace tylgalactosamine, as well as several mono- and disialyl O -glycosidically-linked oligosaccharides, and the tetra-saccharide AcNeu(α2 ± 3)Gal(β l ± 3)[AcNeu(α2 ± (6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23–68%), heparan sulfate (16–23%), and glycoprotein oligosaccharides (16–54%), which are of the triand tetraantennary and O -glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.  相似文献   

19.
The isolation of a rat alveolar macrophage lectin   总被引:3,自引:0,他引:3  
A lectin in rat alveolar macrophage membranes with a high affinity for binding ligands containing L-fucose and N-acetyl-D-glucosamine has been isolated by affinity chromatography on Fuc-BSA-Sepharose (where Fuc is fucosyl and BSA is bovine serum albumin). The lectin was extracted from rat lung homogenates with Triton X-100, absorbed from the extract onto Fuc-BSA-Sepharose in the presence of Ca2+ and eluted by removal of Ca2+. After a second adsorption to and elution from Fuc-BSA-Sepharose, three protein species were detected electrophoretically in fractions that bind Fuc-BSA. One, which was the mannose/N-acetylglucosamine lectin (Mr = 32,000) found earlier in hepatocytes, was removed by adsorption on anti-lectin IgG-Sepharose. Another (Mr = 46,000) was removed by adsorption to Fuc-BSA-Sepharose and elution with galactose. The remaining lectin (Mr = 180,000) bound fucose and N-acetylglucosamine but not galactose. Binding was maximal between pH 6.5 and 9.0 and dependent on Ca2+. Immunocytological analysis with rabbit anti-lectin IgG and fluorescein-labeled goat anti-rabbit IgG revealed the lectin to be in rat alveolar macrophages and nonparenchymal cells of liver. Thus, the lectin appears to be present in macrophages and is likely involved in receptor-mediated endocytosis. It is distinctly different structurally from the hepatocyte lectin with a similar ligand-binding specificity.  相似文献   

20.
Wu AM  Wu JH  Herp A  Chow LP  Lin JY 《Life sciences》2001,69(17):2027-2038
To elucidate of the mechanism of intoxication, the affinity of a toxic lectin, abrin A, from the seeds of Abrus precatorius for mammalian carbohydrate ligands, was studied by enzyme linked lectinosorbent assay and by inhibition of abrin A-glycan interaction. From the results, it is concluded that: (1) abrin A reacted well with Gal beta1-->4GlcNAc (II), Gal alpha1-->4Gal (E), and Gal beta1-->3GalNAc (T) containing glycoproteins. But it reacted weakly with sialylated gps and human blood group A,B,H active glycoproteins (gps); (2) the combining site of abrin A lectin should be of a shallow groove type as this lectin is able to recognize from monosaccharides with specific configuration at C-3, C-4, and deoxy C-6 of the (D)Fuc pyranose ring to penta-saccharides and probably internal Gal alpha,beta-->; and (3) its binding affinity toward mammalian structural features can be ranked in decreasing order as follows: cluster forms of II, T, B/E (Gal alpha1-->3/4Gal) > monomeric T > monomeric II > monomeric B/E, Gal > GalNAc > monomeric I > Man and Glc (inactive). These active glycotopes can be used to explain the possible structural requirements for abrin A toxin attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号