首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Heparin depresses the second-order rate constant ka for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. High molecular mass heparin decreases ka from 1.3 x 10(7) M-1 s-1 to a limit of 4.6 x 10(4) M-1 s-1. Low molecular mass heparin is about 7-fold less effective. Dermatan sulfate and chondroitin sulfate are less efficient. Heparin preparations used in clinical care also strongly depress ka when tested at concentrations corresponding to their clinical efficacy. Heparin also decreases the ka for the elastase/eglin c and the cathepsin G/alpha 1-proteinase inhibitor systems but not that for the alpha 1-proteinase inhibitor/pancreatic elastase or trypsin pairs. These results, together with Sepharose-heparin binding studies, indicate that the ka-depressing effect of the polymer is related to its ability to form a tight complex with elastase but not with alpha 1-proteinase inhibitor. One mol of high molecular mass heparin binds 3 mol of neutrophil elastase with a Kd of 3.3 nM. Low molecular mass heparin binds elastase with a 1:1 stoichiometry and a Kd of 89 nM. For both heparins ka is lowest when elastase is fully saturated with heparin. From this we conclude that heparin decreases ka, because the heparin-elastase complex is able to slowly react with alpha 1-proteinase inhibitor and not because the inhibitor slowly dissociates the heparin-elastase complex. These findings may have important pathophysiological bearing.  相似文献   

2.
Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors   总被引:17,自引:0,他引:17  
Urokinase-type plasminogen activator (uPA) binds to a specific receptor on various cell types, the bound molecule retaining its enzymatic activity against plasminogen. We have now investigated whether receptor-bound uPA also retains the ability to react with and be inhibited by plasminogen activator inhibitors (PAI-1 and PAI-2). uPA bound to its receptor on human U937 monocyte-like cells was inhibited by PAI-1 (in its active form in the presence of vitronectin fragments) with an association rate constant of 4.5 x 10(6) M-1 s-1, which was 40% lower than that obtained for uPA in solution (7.9 x 10(6) M-1 s-1). The inhibition of uPA by PAI-2 was decreased to a similar extent by receptor binding, falling from 5.3 x 10(5) to 3.3 x 10(5) M-1 s-1. Stimulation of U937 cells with phorbol 12-myristate 13-acetate was accompanied by a further reduction in receptor-bound uPA inhibition by PAI-1 and PAI-2 to 1.7 x 10(6) and 1.1 x 10(5) M-1 s-1, respectively. These constants although lower than those for uPA in solution still represent rather rapid inhibition of the enzyme, and demonstrate that uPA bound to its specific cellular receptor remains available for efficient inhibition by PAI's, which may therefore play a major role in controlling cell-surface plasminogen activation and extracellular proteolytic activity.  相似文献   

3.
Structural and functional properties of alpha-protease nexin I (alpha-PNI) expressed in Chinese hamster ovary cells were studied. All three cysteines were in the reduced form, showing that the potential disulfide bridge between residues Cys117 and Cys131 was not formed. Heparin association rate enhancements were from ka = 8.3 x 10(5) to 0.7-1.6 x 10(9) M-1 s-1 for the interaction of PNI with thrombin, from ka = 5.1 x 10(3) to 3.5 x 10(5) M-1 s-1 for interaction with Factor Xa, and from ka = 2.2 x 10(6) to 1.0 x 10(7) M-1 s-1 for interaction with trypsin; there was no rate enhancement of the plasmin interaction (ka = 1.0 x 10(5) M-1 s-1). The minimal heparin pentasaccharide had no effect on these interactions. Cleavage of the reactive center loop of PNI by three different proteases gave the typical stressed to relaxed change in thermal stability, but unlike with antithrombin III, there was no loss of heparin affinity. A similar difference from antithrombin was that PNI-thrombin complexes retained normal heparin affinity. These results are compatible with a role for protease nexin I as a cell-associated thrombin inhibitor that remains bound to the cell surface even after complexing with the protease, as compared with the role of antithrombin III as a circulating inhibitor of thrombin that becomes activated on binding to the microvasculature and is released on complex formation.  相似文献   

4.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

5.
Highly purified plasminogen-activator inhibitors of type 1 (PAI-1) and type 2 (PAI-2), low-Mr form, were compared with respect to their kinetics of inhibition of tissue-type (t-PA) and urokinase-type plasminogen activator (u-PA). The time course of inhibition of plasminogen activator was studied under second-order or pseudo-first-order conditions. Residual enzyme activity was measured by the initial rate of hydrolysis of a chromogenic t-PA or u-PA substrate or by an immunosorbent assay for t-PA activity. PAI-1 rapidly reacted with single-chain t-PA as well as with two-chain forms of t-PA and u-PA. The second-order rate constant k for inhibition of single-chain t-PA (5.5 x 10(6) M-1 s-1) was about three times lower than k for inhibition of the two-chain activators. PAI-2 reacted slowly with single-chain t-PA, k = 4.6 x 10(3) M-1 s-1. The association rate was 26 times higher with two-chain t-PA and 435 times higher with two-chain u-PA. The k values for inhibition of single-chain t-PA, two-chain t-PA and two-chain u-PA were respectively, 1200, 150 and 8.5 times higher with PAI-1 than with PAI-2. The removal of the epidermal growth factor domain and the kringle domain from two-chain u-PA did not affect the kinetics of inhibition of the enzyme, suggesting that the C-terminal proteinase part of u-PA (B chain) is responsible for both the primary and the secondary interactions with PAI-1 and PAI-2. The k values for inhibition of single-chain t-PA and endogenous t-PA in plasma by PAI-1 or PAI-2 were identical indicating that t-PA in blood consists mainly in its single-chain form.  相似文献   

6.
The rate constants have been determined for elementary steps in the basal GTPase mechanism of normal p21N-ras (Gly-12) and an oncogenic mutant (Asp-12): namely GTP binding, hydrolysis, phosphate release, and GDP release. By extrapolation from data at lower temperatures, the GTP association rate constant at 37 degrees C is 1.4 x 10(8) M-1 s-1 for the normal protein and 4.8 x 10(8) M-1 s-1 for the mutant. Other rate constants were measured directly at 37 degrees C, and three processes have similar slow values. GTP dissociation is at 1.0 x 10(-4) s-1 (normal) and 5.0 x 10(-4) s-1 (mutant). The hydrolysis step is at 3.4 x 10(-4) s-1 (normal) and 1.5 x 10(-4) s-1 (mutant). GDP dissociates at 4.2 x 10(-4) s-1 (normal) and 2.0 x 10(-4) s-1 (mutant). GDP association rate constants are similar to those for GTP, 0.5 x 10(8) M-1 s-1 for normal and 0.7 x 10(8) M-1 s-1 for mutant. Both hydrolysis and GDP release therefore contribute to rate limitation of the basal GTPase activity. There are distinct differences (up to 5-fold) between rate constants for the normal and mutant proteins at a number of steps. The values are consistent with the reduced GTPase activity for this mutant and suggest little difference between normal and mutant proteins in the relative steady-state concentrations of GTP and GDP complexes that may represent active and inactive states. The results are discussed in terms of the likely role of p21ras in transmembrane signalling.  相似文献   

7.
The consequences of the combined effects of fibrin II monomer (FnIIm) and heparin (H) on the hydrolysis of peptidyl p-nitroanilide substrates by thrombin (IIa), the cleavage of prothrombin by thrombin and the thrombin-catalyzed release of fibrinopeptides from fibrinogen have been studied at pH 7.4 and I 0.15. The effects of fibrin II monomer and heparin on chromogenic substrate hydrolysis can be described by a hyperbolic mixed inhibition model in which substrate can interact with four possible enzyme species (IIa, IIa.H, IIa.FnIIm, and IIa.FnIIm.H) that arise as a result of random formation of a ternary complex among thrombin, fibrin II monomer, and heparin (Hogg, P. J. and Jackson, C. M. (1990) J. Biol. Chem. 265, 241-247). The formation of the ternary IIa.FnIIm.H complex results in an increase in the Km values of 7.03 +/- 1.17-fold (1.37-9.65 microM) and 1.94 +/- 0.60-fold (38.1-73.9 microM) for H-D-Ile-Pro-Arg-pNA and Cbz-Gly-Pro-Arg-pNA hydrolysis, respectively, and a decrease in the kc values of 0.45 +/- 0.08-fold (49.5-22.3 s-1) and 0.52 +/- 0.05-fold (93.1-48.4 s-1). Fibrin II monomer and heparin in combination also decrease the efficiency (kc/Km) with which thrombin cleaves prothrombin to produce Fragment 1 and Prethrombin 1 by 2.3-fold from 607 +/- 30 to 264 +/- 13 M-1 s-1. In contrast to the effects of fibrin II monomer and heparin on thrombin hydrolysis of chromogenic substrates, its proteolysis of prothrombin and its inactivation by antithrombin III (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623), these components have no discernible influence on the ability of thrombin to cleave fibrinogen. These observations indicate that the substrate specificity of thrombin is altered when it is bound in a complex with fibrin II monomer and heparin and suggest that the catalytic efficiency of thrombin for its physiological substrates will be affected differentially by these interactions. Such ternary complex formation involving thrombin, fibrin II monomer, and heparin may provide a mechanism for selectively regulating thrombin action.  相似文献   

8.
The activation kinetics of single chain urinary-type plasminogen activator (scu-PA) by plasmin have been studied in detail. Nonstandard Michaelis-Menten kinetics were observed. To explain our results, we propose a model in which plasmin can exist in two conformations of lower activity (kcat/Km = 1.4 x 10(6) M-1 s-1) or higher activity (kcat/Km = 16.7 x 10(6) M-1 s-1) depending on whether a lysine binding site is occupied or free, respectively. These kinetic studies demonstrate that scu-PA interacts at this binding site (KD approximately 30 nM) and so is able to act as both a substrate and effector in this reaction. Binding was also demonstrated between scu-PA and Glu- or Lys-plasminogen at a high affinity site (KD approximately 65 nM), sensitive to the presence of lysine analogs. This suggests that scu-PA may be almost completely bound to plasminogen in plasma under normal physiological conditions and provides a possible explanation for the fibrin specificity of this activator, as discussed.  相似文献   

9.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

10.
Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.  相似文献   

11.
Alignment of the heparin-activated serpins indicates the presence of two binding sites for heparin: a small high-affinity site on the D-helix corresponding in size to the minimal pentasaccharide heparin, and a longer contiguous low-affinity site extending to the reactive center pole of the molecule. Studies of the complexing of antithrombin and its variants with heparin fractions and with reactive center loop peptides including intermolecular loop-sheet polymers all support a 3-fold mechanism for the heparin activation of antithrombin. Binding to the pentasaccharide site induces a conformational change as measured by circular dichroism. Accompanying this, the reactive center becomes more accessible to proteolytic cleavage and there is a 100-fold increase in the kass for factor Xa but only a 10-fold increase for thrombin, to 6.4 x 10(4) M-1 s-1. To obtain a 100-fold increase in the kass for thrombin requires in addition a 4:1 molar ratio of disaccharide to neutralize the charge on the extended low-affinity site. Full activation requires longer heparin chains in order to stabilize the ternary complex between antithrombin and thrombin. Thus, addition of low-affinity but high molecular weight heparin in conjunction with pentasaccharide gives an overall kass of 2.7 x 10(6) M-1 s-1, close to that of maximal heparin activation.  相似文献   

12.
Compared to other monomeric heme proteins and the heme peroxidases, the Glycera dibranchiata monomer hemoglobin components III and IV exhibit very slow cyanide binding kinetics. This is agreement with the previously reported behavior of component II. Similar to component II, components III and IV have been studied under pseudo-first-order conditions at pH 6.0, 7.0, 8.0, and 9.0 by using a 100-250-fold excess of potassium cyanide at each pH. At 20 degrees C with micromolar protein concentrations, kobs for component III varies between 7.08 x 10(-5) s-1 at pH 6.0 and 100-fold cyanide excess and 1.06 x 10(-2) s-1 at pH 9.0 and 250-fold cyanide excess. For component IV, the values are 2.03 x 10(-4) s-1 for 100-fold cyanide excess at pH 6.0 and 4.13 x 10(-2) s-1 for 250-fold cyanide excess at pH 9.0. In comparison to other heme proteins, our analysis shows that the bimolecular rate constant (klapp) is small. For example, at pH 7.0, it is 3.02 x 10(-1) M-1 s-1 for component III and 1.82 M-1 s-1 for component IV, compared to 400 M-1 s-1 for sperm whale metmyoglobin, 692 M-1 s-1 for soybean metleghemoglobin a, 111 M-1 s-1 for guinea pig methemoglobin, and 1.1 x 10(5) M-1 s-1 for cytochrome c peroxidase. Our results also show that the dissociation rates (k-lapp) are extremely slow and no larger than 10(-6) s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution.  相似文献   

14.
The selective inhibition of thrombin by peptides of boroarginine   总被引:2,自引:0,他引:2  
Peptides containing alpha-aminoboronic acids with neutral side chains are highly effective reaction intermediate analog inhibitors of the serine proteases leukocyte elastase, pancreatic elastase, and chymotrypsin. A protocol has been developed for the synthesis of peptides containing alpha-aminoboronic acids with a basic, 3-guanidinopropyl side chain (boroArg) to extend the range of these compounds to trypsin-like proteases. Ac-(D)Phe-Pro-boroArg-OH, Boc-(D)Phe-Pro-boroArg-OH, and H-(D)Phe-Pro-boroArg-OH were prepared as inhibitors of thrombin based on earlier observations that it has a high affinity for this sequence. All three boronic acids are highly effective, slow-binding inhibitors of thrombin, inhibiting it with final inhibition constants and association rates of: 41 pM, 5.5 x 10(6) M-1 s-1; 3.6 pM, 9.3 x 10(6) M-1 s-1; less than 1 pM, 8.0 x 10(6) M-1 s-1, respectively. Comparison of their binding at equilibrium to thrombin, plasma kallikrein, factor Xa, plasmin, and two-chain tissue plasminogen activator has shown that all three inhibitors have at least 2 orders of magnitude greater affinity for thrombin, with the exception of the acetyl derivative which has a 40-fold greater affinity for thrombin than kallikrein. The boroarginine peptides are effective in inhibiting the action of thrombin in rabbit plasma against its physiological substrates. Activated partial thromboplastin time was significantly prolonged in vitro by all of the inhibitors at concentrations of 50-200 nM. Prolongations of activated partial thromboplastin time were also observed in rabbits after intravenous (40-80 micrograms/kg or subcutaneous (0.20-2 mg/kg) injections of Ac-(D)Phe-Pro-boroArg-OH. Results indicate that this new class of synthetic thrombin inhibitors may be clinically useful as antithrombotic agents.  相似文献   

15.
In order to identify the regions of recombinant (r) tissue plasminogen activator (tPA) that mediate its kinetically relevant interaction with r-plasminogen activator inhibitor-1 (rPAI-1), we have determined the second-order association rate (k1) constants of domain-altered variants of tPA with rPAI-1, at 10 degrees C. With two-chain, wild-type recombinant tPA (tcwt-rtPA), obtained by expression of the human cDNA for tPA in five different cell systems (viz. insect cells, human kidney 293 cells, Chinese hamster ovary cells, human melanoma cells, and mouse C127 cells), the average k1 was 1.45 x 10(7) M-1 s-1 (range, 1.34 10(7) M-1 s-1-1.68 x 10(7) M-1 s-1). Since this value was not significantly different for the different tcwt-rtPA preparations, it appears as though the nature of the glycosylation of tPA plays little role in its initial interaction with PAI-1. The k1 determined for tcwt-rtPA was slightly higher than that of 0.87 x 10(7) M-1 s-1, obtained for a similar inhibition of human urokinase by rPAI-1. The k1 value obtained for single-chain (sc) wt-rtPA was approximately 6-fold lower than that of the two-chain molecules, results consistent with previous conclusions on this matter. The k1 value for tcwt-rtPA was not influenced by the presence of epsilon-aminocaproic acid, suggesting that the lysine-binding site associated with the kringle 2 (K2) region of tPA does not modulate the rate of its initial interaction with rPAI-1. Removal of the K2 domain from tPA, by recombinant DNA technology, results in a protein, F-E-K1-P (tc-r delta K2-tPA), containing only the finger (F), growth factor (E), kringle 1 (K1), and serine protease (P) domains. This variant protein was more rapidly inhibited by rPAI-1 (k1 = 3.00 x 10(7) M-1 s-1) than its wild-type counterparts. Deletion of both the K1 and K2 domains resulted in a variant molecule, F-E-P (tc-r delta K1 delta K2-tPA), that was slightly more rapidly inhibited by rPAI-1 (k1 = 2.01 x 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
B A Owen  W G Owen 《Biochemistry》1990,29(40):9412-9417
Factor Xa modified by reductive methylation (greater than 92%) loses the capacity to bind heparin as determined both by gel chromatography and by sedimentation equilibrium ultracentrifugation. The kinetic properties of methylated factor Xa differ, with respect to KM and Vmax for a synthetic tripeptide substrate and for antithrombin III inhibition rate constants, from those of the unmodified enzyme. The 10,000-fold rate enhancement elicited by the addition of heparin to the antithrombin III inhibition reaction, however, is the same. The observed second-order rate constants (k"obs) for antithrombin III inhibition of factor Xa and methylated factor Xa are 3000 and 340 M-1 s-1, respectively, whereas k"obs values for the inhibition of factor Xa or methylated factor Xa with antithrombin III-heparin are 4 X 10(7) and 3 X 10(6) M-1 s-1, respectively. These findings provide direct evidence that the interaction of factor Xa with heparin is not involved in the heparin-enhanced inhibition of this enzyme.  相似文献   

17.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

18.
The kinetics of alpha-factor Xa inhibition by antithrombin III (AT) were studied in the absence and presence of heparin (H) with high affinity for antithrombin by stopped-flow fluorometry at I 0.3, pH 7.4 and 25 degrees C, using the fluorescence probe p-aminobenzamidine (P) and intrinsic protein fluorescence to monitor the reactions. Active site binding of p-aminobenzamidine to factor Xa was characterized by a 200-fold enhancement and 4-nm blue shift of the probe fluorescence emission spectrum (lambda max 372 nm), 29-nm red shift of the excitation spectrum (lambda max 322 nm), and dissociation constant (KD) of about 80 microM. Under pseudo-first order conditions [( AT]0, [H]0, [P]0 much greater than [Xa]0), the observed factor Xa inactivation rate constant (kobs) measured by p-aminobenzamidine displacement or residual enzymatic activity increased linearly with the "effective" antithrombin concentration (i.e. corrected for probe competition) up to 300 microM in the absence of heparin, indicating a simple bimolecular process with a rate constant of 2.1 x 10(3) M-1 s-1. In the presence of heparin, a similar linear dependence of kobs on effective AT.H complex concentration was found up to 25 microM whether the reaction was followed by probe displacement or the quenching of AT.H complex protein fluorescence due to heparin dissociation, consistent with a bimolecular reaction between AT.H complex and free factor Xa with a 300-fold enhanced rate constant of 7 x 10(5) M-1 s-1. Above 25 microM AT.H complex, an increasing dead time displacement of p-aminobenzamidine and a downward deviation of kobs from the initial linear dependence on AT.H complex concentration were found, reflecting the saturation of an intermediate Xa.AT.H complex with a KD of 200 microM and a limiting rate of Xa-AT product complex formation of 140 s-1. Kinetic studies at catalytic heparin concentrations yielded a kcat/Km for factor Xa at saturating antithrombin of 7 x 10(5) M-1 s-1 in agreement with the bimolecular rate constant obtained in single heparin turnover experiments. These results demonstrate that 1) the accelerating effect of heparin on the AT/Xa reaction is at least partly due to heparin promoting the ordered assembly of antithrombin and factor Xa in an intermediate ternary complex and that 2) heparin catalytic turnover is limited by the rate of conversion of the ternary complex intermediate to the product Xa-AT complex with heparin dissociation occurring either concomitant with this step or in a subsequent faster step.  相似文献   

19.
Amidolytic assays have been developed to determine factor XIIa, factor XIa and plasma kallikrein in mixtures containing variable amounts of each enzyme. The commercially available chromogenic p-nitroanilide substrates Pro-Phe-Arg-NH-Np (S2302 or chromozym PK), Glp-Pro-Arg-NH-Np (S2366), Ile-Glu-(piperidyl)-Gly-Arg-NH-Np (S2337), and Ile-Glu-Gly-Arg-NH-Np (S2222) were tested for their suitability as substrates in these assays. The kinetic parameters for the conversion of S2302, S2222, S2337 and S2366 by beta factor XIIa, factor XIa and plasma kallikrein indicate that each active enzyme exhibits considerable activity towards a number of these substrates. This precludes direct quantification of the individual enzymes when large amounts of other activated contact factors are present. Several serine protease inhibitors have been tested for their ability to inhibit those contact factors selectively that may interfere with the factor tested for. Soybean trypsin inhibitor very efficiently inhibited kallikrein, inhibited factor XIa at moderate concentrations, but did not affect the amidolytic activity of factor XIIa. Therefore, this inhibitor can be used to abolish a kallikrein and factor XIa contribution in a factor XIIa assay. We also report the rate constants of inhibition of contact activation factors by three different chloromethyl ketones. D-Phe-Pro-Arg-CH2Cl was moderately active against contact factors (k = 2.2 X 10(3) M-1 s-1 at pH 8.3) but showed no differences in specifity. D-Phe-Phe-Arg-CH2Cl was a very efficient inhibitor of plasma kallikrein (k = 1.2 X 10(5) M-1 s-1 at pH 8.3) whereas it slowly inhibited factor XIIa (k = 1.4 X 10(3) M-1 s-1) and factor XIa (k = 0.11 X 10(3) M-1 s-1). Also Dns-Glu-Gly-Arg-CH2Cl was more reactive towards kallikrein (k = 1.6 X 10(4) M-1 s-1) than towards factor XIIa (k = 4.6 X 10(2) M-1 s-1) and factor XIa (k = 0.6 X 10(2) M-1 s-1). Since Phe-Phe-Arg-CH2Cl is highly specific for plasma kallikrein it can be used in a factor XIa assay selectively to inhibit kallikrein. Based on the catalytic efficiencies of chromogenic substrate conversion and the inhibition characteristics of serine protease inhibitors and chloromethyl ketones we were able to develop quantitative assays for factor XIIa, factor XIa and kallikrein in mixtures of contact activation factors.  相似文献   

20.
The influence of heparin on the inhibition of factor Xa has been studied under conditions where factor Xa is bound to collagen-thrombin-stimulated platelets to form the prothrombinase complex. Unfractionated heparin was found to cause a concentration-dependent acceleration of the inhibition of the platelet prothrombinase complex up to a maximum rate constant of 4.1 X 10(7) M-1 X min-1 at heparin concentrations of 0.2 microM and above. This is equivalent to a 4800-fold acceleration over the rate constant for the inhibition in the absence of heparin, and is 6.8-fold lower than the rate constant for the inhibition of uncomplexed factor Xa in the presence of saturating concentrations of heparin which was determined as 2.8 X 10(8) M-1 X min-1. The effects of three Mr fractions of heparin were also studied. These were a gel-filtered heparin of Mr 15000, a gel-filtered heparin of Mr 6000 and a heparin oligosaccharide (primarily 8-10 monosaccharide units) prepared by nitrous acid depolymerization, each with high affinity for antithrombin III. These fractions all accelerated the rate of the antithrombin III inhibition of the platelet prothrombinase complex, with maximum rate constants of 6.8 X 10(7), 1.4 X 10(7) and 9.8 X 10(6) M-1 X min-1, respectively. On comparison with the effect of these heparin fractions on the rate of inhibition of uncomplexed factor Xa a progressively increasing disparity between the rate of inhibition of uncomplexed and complexed factor Xa was observed, rising from 1.7-fold with the oligosaccharide to 6.8-fold with the unfractionated heparin. A possible mechanism for this differential activity between uncomplexed and complexed factor Xa with the various heparin fractions is discussed in terms of an involvement of heparin binding to factor Xa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号