首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular signal transduction pathways involved in ATP release evoked by angiotensin II (Ang II) were investigated in cultured guinea pig Taenia coli smooth muscle cells. Ang II (0.3-1 microM) elicited substantial release of ATP from the cells, but not from a human fibroblast cell line. However, Ang II even at 10 microM failed to cause a leakage of lactate dehydrogenase (LDH) from the smooth muscle cells. The release of ATP by Ang II was suppressed by 10 microM SC52458, an AT1 receptor antagonist, not by 10 microM PD123319, an AT2 receptor antagonist. The evoked release of ATP was almost completely inhibited in the presence of 10 microM U73122, a phospholipase C inhibitor, and 0.5 microM thapsigargin, a Ca2+-ATPase inhibitor. Furthermore, the release was hampered by 50 microM BAPTA/AM, an intracellular Ca2+ chelator, but not by 0.1 microM nifedipine, a voltage gated Ca2+ channel inhibitor. The basal release of ATP was increased by BAPTA/AM, but was reduced by U-73122. Ang II enhanced instantaneously inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) accumulation in the cells. The enhancing effect was perfectly antagonized by SC52458. These findings suggest that intracellular Ca2+ signals activated via stimulation of Ins(1,4,5)P3 receptor are involved in the release of ATP evoked by Ang II.  相似文献   

2.
BACKGROUND/AIMS: There is a need for the development of transgenic mice to elucidate molecular mechanisms in surfactant secretion. However at present very little is known about the regulation of surfactant exocytosis in murine alveolar type II (AT II) cells. METHODS: We brought AT II cells isolated from the Immorto mouse into culture at 33 degrees C, in the presence of interferon, to generate immortal mouse AT II cells (iMAT II). Surfactant secretion was measured using real-time fluorescence imaging. RESULTS: iMAT II cells stained with lysotracker green (LTG), a dye specific for lamellar body related vesicles in rat AT II cells. Expression of densely layered structures, characteristic of LBs, was confirmed by transmission electron microscopy. Flash photolysis of caged Ca2+, which specifically elevates intracellular Ca2+ concentration ([Ca2+]i), resulted in LB fusion to the plasma membrane, as analysed using the lipid staining dye FM 1-43. Purinergic stimulation with ATP (10 microM), also resulted in a rise in [Ca2+]i (measured by fura-2), which was followed by LB fusion. CONCLUSIONS: iMATII cells maintain the expression of LBs over several passages. Surfactant secretion in these cells is regulated by [Ca2+]i, and exhibits similar characteristics to that of rat AT II cells. These cells will be beneficial in studying the impact of genetic modifications on regulated surfactant secretion.  相似文献   

3.
The authors describe a simple, reliable, and quantitative assay to monitor exocytotic fusion of lamellar bodies (LBs) in adherent rat alveolar type II (AT II) cells. The assay is based on fluorescence measurements of LB-plasma membrane (PM) fusions modified for the use in multiwell culture plates to obtain a high-sample throughput. In particular, it is based on the presence of a highly light-absorbing dye in the cell supernatants to increase the specificity of fluorescence signals and to yield pseudo-confocal information from the cells. When the assay was tested with agonist-(ATP) and phorbolester-induced stimulation of LB-PM fusions, the authors found a good correlation with direct microscopic investigations based on single cell recordings. To further validate the assay, they used Curosurf at 10 mg/ml. However, it influenced neither the basal nor the ATP-stimulated rate of LB-PM fusions. This was corroborated by the fact that Curosurf had no effect on resting Ca (2+) levels nor the ATP induced Ca (2+) signals. The results cast new light on previous findings that surfactant phospholipids decrease the rate of secretion in AT II cells in a dose-dependent way. The authors conclude that the inhibitory effect exerted by phospholipids might be due to action on a later step in exocytosis, probably associated with exocytotic fusion pore expansion and content release out of fused vesicles.  相似文献   

4.
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.  相似文献   

5.
This study determined whether whole cell Ca(2+) transients and unitary sarcoplasmic reticulum (SR) Ca(2+) release events are constant throughout adult life or whether Ca(2+) release is altered in aging ventricular myocytes. Myocytes were isolated from young adult (approximately 5 mo old) and aged (approximately 24 mo old) mice. Spontaneous Ca(2+) sparks and Ca(2+) transients initiated by field stimulation were detected with fluo-4. All experiments were conducted at 37 degrees C. Ca(2+) transient amplitudes were reduced, and Ca(2+) transient rise times were abbreviated in aged cells stimulated at 8 Hz compared with young adult myocytes. Furthermore, the incidence and frequency of spontaneous Ca(2+) sparks were markedly higher in aged myocytes compared with young adult cells. Spark amplitudes and spatial widths were similar in young adult and aged myocytes. However, spark half-rise times and half-decay times were abbreviated in aged cells compared with younger cells. Resting cytosolic Ca(2+) levels and SR Ca(2+) stores were assessed by rapid application of caffeine in fura-2-loaded cells. Neither resting Ca(2+) levels nor SR Ca(2+) content differed between young adult and aged cells. Thus increased spark frequency in aging cells was not attributable to increased SR Ca(2+) stores. Furthermore, the decrease in Ca(2+) transient amplitude was not due to a decrease in SR Ca(2+) load. These results demonstrate that alterations in fundamental SR Ca(2+) release units occur in aging ventricular myocytes and raise the possibility that alterations in Ca(2+) release may reflect age-related changes in fundamental release events rather than changes in SR Ca(2+) stores and diastolic Ca(2+) levels.  相似文献   

6.
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.  相似文献   

7.
Rap1 is a small GTPase that regulates adherens junction maturation. It remains elusive how Rap1 is activated upon cell-cell contact. We demonstrate for the first time that Rap1 is activated upon homophilic engagement of vascular endothelial cadherin (VE-cadherin) at the cell-cell contacts in living cells and that MAGI-1 is required for VE-cadherin-dependent Rap1 activation. We found that MAGI-1 localized to cell-cell contacts presumably by associating with beta-catenin and that MAGI-1 bound to a guanine nucleotide exchange factor for Rap1, PDZ-GEF1. Depletion of MAGI-1 suppressed the cell-cell contact-induced Rap1 activation and the VE-cadherin-mediated cell-cell adhesion after Ca2+ switch. In addition, relocation of vinculin from cell-extracellular matrix contacts to cell-cell contacts after the Ca2+ switch was inhibited in MAGI-1-depleted cells. Furthermore, inactivation of Rap1 by overexpression of Rap1GAPII impaired the VE-cadherin-dependent cell adhesion. Collectively, MAGI-1 is important for VE-cadherin-dependent Rap1 activation upon cell-cell contact. In addition, once activated, Rap1 upon cell-cell contacts positively regulate the adherens junction formation by relocating vinculin that supports VE-cadherin-based cell adhesion.  相似文献   

8.
The effects of ouabain (10(-7) to 10(-5) M) on the interrelationship between cell-cell contacts, resting tension, and creatine phosphokinase (CK) leakage owing to myocardial cell injury during Ca2+ paradox were studied in isolated perfused rat heart preparations. After perfusing for 15 min with Ca2+ -containing medium, hearts were perfused for 5 min with Ca2+ -free medium followed by a reperfusion with Ca2+ -containing medium for 5 min. This resulted in a transient increase in resting tension and a substantial release of CK into the perfusate during the calcium reperfusion period. These changes were accompanied by extensive structural damage in the myocardial cell, including formation of contraction bands, swelling of the mitochondria, and cell-cell separation. Inclusion of 10(-5) M ouabain for 5 min in the Ca2+ -containing perfusion medium prior to the start of Ca2+ -free perfusion resulted in a higher and sustained resting tension that was accompanied by a reduced loss of CK from the heart during Ca2+ reperfusion. In a histological examination of these ouabain exposed hearts, most of the structural changes owing to calcium paradox were apparent, but the cell-cell contacts were maintained. The results are consistent with the hypothesis that the loss of cell-cell contacts in the intercalated disc during the occurrence of Ca2+ paradox may be the cause of the delayed decline in the resting tension and is only partially responsible for the loss of CK. These differences in myocardial changes during Ca2+ paradox with or without ouabain may be due to the retention of calcium at certain crucial sites under the influence of ouabain.  相似文献   

9.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

10.
Bacterial LPS is a potent proinflammatory molecule. In the lungs, LPS induces alterations in surfactant pool sizes and phospholipid (PL) contents, although direct actions of LPS on the alveolar type II cells (AT II) are not yet clear. For this reason, we studied short- and long-term effects of LPS on basal and agonist-stimulated secretory responses of rat AT II by using Ca(2+) microfluorimetry, a microtiter plate-based exocytosis assay, by quantitating PL and (3)H-labeled choline released into cell supernatants and by using quantitative PCR and Western blot analysis. Long term, but not short term, exposures to LPS led to prolonged ATP-induced Ca(2+) signals and an increased rate in vesicle fusions with an augmented release of surfactant PL. Most notably, the stimulatory effect of LPS was ATP-dependent and may be mediated by the upregulation of the purinergic receptor subtype P2Y(2). Western blot analysis confirmed higher levels of P2Y(2), and suramin, a P2Y receptor antagonist, was more effective in LPS-treated cells. From these observations, we conclude that LPS, probably via Toll-like receptor-4, induces a time-dependent increase in P2Y(2) receptors, which, by yet unknown mechanisms, leads to prolonged agonist-induced Ca(2+) responses that trigger a higher activity in vesicle fusion and secretion. We further conclude that chronic exposure to endotoxin sensitizes AT II to increase the extracellular surfactant pool, which aids in the pulmonary host defense mechanisms.  相似文献   

11.
J Lang  M Fukuda  H Zhang  K Mikoshiba    C B Wollheim 《The EMBO journal》1997,16(19):5837-5846
The Ca2+- and phospholipid-binding protein synaptotagmin is involved in neuroexocytosis. Its precise role and Ca2+-affinity in vivo are unclear. We investigated its putative function in insulin secretion which is maximally stimulated by 10 microM cytosolic free Ca2+. The well-characterized synaptotagmin isoforms I and II are present in pancreatic beta-cell lines RINm5F, INS-1 and HIT-T15 as shown by Northern and Western blots. Subcellular fractionation and confocal microscopy revealed their presence mainly on insulin-containing secretory granules whereas only minor amounts were found on synaptic vesicle-like microvesicles. Antibodies or Fab-fragments directed against the Ca2+-dependent phospholipid binding site of the first C2 domain of synaptotagmin I or II inhibited Ca2+-stimulated, but not GTPgammaS-induced exocytosis from streptolysin-O-permeabilized INS-1 and HIT-T15 cells. Transient expression of wild-type synaptotagmin II did not alter exocytosis in HIT-T15 cells. However, mutations in the Ca2+-dependent phospholipid binding site of the first C2 domain (Delta180-183, D231S) again inhibited only Ca2+-, but not GTPgammaS-evoked exocytosis. In contrast, mutations in the IP4-binding sites of the second C2 domain (Delta325-341; K327,328, 332Q) did not alter exocytosis. Synaptotagmin II mutated in both C2 domains (Delta180-183/K327,328,332Q) induced greater inhibition than mutant Delta180-183, suggesting a discrete requirement for the second C2 domain. Thus, synaptotagmin isoforms regulate exocytotic events occurring at low micromolar Ca2+.  相似文献   

12.
In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging with unsurpassed resolution in a limited zone at the interface of the plasma membrane and the coverslip. In TIRFM mode, physiological agonist stimulation resulted in Ca2+ oscillations in both pancreas and parotid with qualitatively similar characteristics to those reported using conventional wide-field microscopy (WFM). Because local Ca2+ release in the TIRF zone would be expected to saturate the Ca2+ indicator (Fluo-4), these data suggest that Ca2+ release is occurring some distance from the area subjected to the measurement. When acini were stimulated with supermaximal concentrations of agonists, an initial peak, largely due to Ca2+ release, followed by a substantial, maintained plateau phase indicative of Ca2+ entry, was observed. The contribution of Ca2+ influx and Ca2+ release in isolation to these near-plasma membrane Ca2+ signals was investigated by using a Ca2+ readmission protocol. In the absence of extracellular Ca2+, the profile and magnitude of the initial Ca2+ release following stimulation with maximal concentrations of agonist or after SERCA pump inhibition were similar to those obtained with WFM in both pancreas and parotid acini. In contrast, when Ca2+ influx was isolated by subsequent Ca2+ readmission, the Ca2+ signals evoked were more robust than those measured with WFM. Furthermore, in parotid acinar cells, Ca2+ readdition often resulted in the apparent saturation of Fluo-4 but not of the low-affinity dye Fluo-4-FF. Interestingly, Ca2+ influx as measured by this protocol in parotid acinar cells was substantially greater than that initiated in pancreatic acinar cells. Indeed, robust Ca2+ influx was observed in parotid acinar cells even at low physiological concentrations of agonist. These data indicate that TIRFM is a useful tool to monitor agonist-stimulated near-membrane Ca2+ signals mediated by Ca2+ influx in exocrine acinar cells. In addition, TIRFM reveals that the extent of Ca2+ influx in parotid acinar cells is greater than pancreatic acinar cells when compared using identical methodologies.  相似文献   

13.
The aim of this work is to verify if Angiotensin II (Ang II) affects the frequency of spontaneous cytosolic and nuclear Ca2+ waves in chick embryonic cardiomyocytes and if this effect is mediated via the activation of AT1 and/or AT2 receptors. Using the rapid scan technique of confocal microscopy, we observed that Ang II (10(-8)M) increases the frequency of cytosolic and nuclear Ca2+ waves. This effect was accompanied by a decrease in the amplitude of nuclear Ca2+ waves and an absence of effect on the amplitude of cytosolic Ca2+ waves. The effect of the octapeptide on both frequency and amplitude of the nuclear waves was prevented by the AT1 receptor antagonist L158809. However, blockade of the AT2 receptor using the antagonist PD123319 (10(-7)M) only prevented the effect of Ang II on the frequency of Ca2+ waves. Furthermore, the effect was prevented by both a PKC inhibitor (bisindolylmaleimide) and a PKC activator (phorbol 12,13-dibutyrate). In addition, the Ang II effect was not prevented by the blocker of the pacemaker current If. These results demonstrate that Ang II, via the activation of its receptors AT1 and AT2, affects the frequency of spontaneous Ca2+ waves and this effect seems to be mediated by the PKC pathway.  相似文献   

14.
Ca2+ responses to two chemoattractants, folate and cyclic AMP (cAMP), were assayed in Dictyostelium D. discoideum mutants deficient in one or both of two abundant Ca2+-binding proteins of the endoplasmic reticulum (ER), calreticulin and calnexin. Mutants deficient in either or both proteins exhibited enhanced cytosolic Ca2+ responses to both attractants. Not only were the mutant responses greater in amplitude, but they also exhibited earlier onsets, faster rise rates, earlier peaks, and faster fall rates. Correlations among these kinetic parameters and the response amplitudes suggested that key events in the Ca2+ response are autoregulated by the magnitude of the response itself, i.e., by cytosolic Ca2+ levels. This autoregulation was sufficient to explain the altered kinetics of the mutant responses: larger responses are faster in both mutant and wild-type cells in response to both folate (vegetative cells) and cAMP (differentiated cells). Searches of the predicted D. discoideum proteome revealed three putative Ca2+ pumps and four putative Ca2+ channels. All but one contained sequence motifs for Ca2+- or calmodulin-binding sites, consistent with Ca2+ signals being autoregulatory. Although cytosolic Ca2+ responses in the calnexin and calreticulin mutants are enhanced, the influx of Ca2+ from the extracellular medium into the mutant cells was smaller. Compared to wild-type cells, Ca2+ release from the ER in the mutants thus contributes more to the total cytosolic Ca2+ response while influx from the extracellular medium contributes less. These results provide the first molecular genetic evidence that release of Ca2+ from the ER contributes to cytosolic Ca2+ responses in D. discoideum.  相似文献   

15.
Here, we show that actin polymerisation inhibitors such as latrunculin B (LB), and to a minor extent also cytochalasin D (Cyt D), enhance the release of arachidonic acid (AA) as well as nuclear translocation of 5-lipoxygenase (5-LO) and 5-LO product synthesis in human polymorphonuclear leukocytes (PMNL), challenged with thapsigargin (TG) or N-formyl-methionyl-leucyl-phenylalanine. The concentration-dependent effects of LB (EC50 approximately 200 nM) declined with prolonged preincubation (>3 min) prior TG and were barely detectable when PMNL were stimulated with Ca2+-ionophores. Investigation of the stimulatory mechanisms revealed that LB (or Cyt D) elicits Ca2+ mobilisation and potentiates stimulus-induced elevation of intracellular Ca2+, regardless of the nature of the stimulus. LB caused rapid but only moderate activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)2. The selective Src family kinase inhibitors PP2 and SU6656 blocked LB- or Cyt D-mediated Ca2+ mobilisation and suppressed the upregulatory effects on AA release and 5-LO product synthesis, without affecting AA metabolism evoked by ionophore alone. We conclude that in PMNL, inhibitors of actin polymerisation cause enhancement of intracellular Ca2+ levels through Src family kinase signaling, thereby facilitating stimulus-induced release of AA and 5-LO product formation.  相似文献   

16.
Catecholamine (CA) release from adrenal medulla evoked by muscarinic receptor stimulation has been studied using isolated perfused adrenal gland and cultured chromaffin cells from dogs. Muscarine and oxotremorine (1-100 microM), and bethanechol (0.1-1 mM) dose-dependently stimulated CA release. Muscarine-evoked CA release was antagonized with M1-antagonist, pirenzepine and, to a lesser extent, with atropine; and was reduced either by removal of extracellular Ca2+ or treatment with Ca2+ channel blockers. Muscarine caused an increase of 45Ca uptake and 22Na uptake. Tetrodotoxin (TTX) did not affect muscarine-evoked increase of 22Na uptake and CA release. Under the absence of extracellular Ca2+, muscarine stimulated a 45Ca efflux. Muscarine-induced CA release was attenuated by treating the cells with 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate-HCl (TMB-8) which blocks Ca2+ release from the intracellular store. A phospholipase C inhibitor, neomycin, markedly reduced muscarine-induced CA release but not nicotine- and high K(+)-evoked release. Cinnarizine, a Ca2+ channel blocker, attenuated muscarine-evoked but not caffeine-induced CA release and 45Ca efflux in the absence of extracellular Ca2+. Muscarine caused an increase in intracellular free Ca2+ concentration ([Ca2+]i) in the presence of extracellular Ca2+. It caused a similar increase, but to a lesser extent, in the absence of extracellular Ca2+. The increase of [Ca2+]i induced by muscarine without extracellular Ca2+ was reduced by neomycin and cinnarizine. Polymixin B and retinal, which reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CA release, had little effect on muscarine-induced CA release. Muscarine increased cellular Ins(1,4,5)P3 production, and atropine inhibited this increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study investigated cardiac excitation-contraction coupling at 37 degrees C in transgenic mice with cardiac-specific overexpression of human beta2-adrenergic receptors (TG4 mice). In field-stimulated myocytes, contraction was significantly greater in TG4 compared with wild-type (WT) ventricular myocytes. In contrast, when duration of depolarization was controlled with rectangular voltage clamp steps, contraction amplitudes initiated by test steps were the same in WT and TG4 myocytes. When cells were voltage clamped with action potentials simulating TG4 and WT action potential configurations, contractions were greater with long TG4 action potentials and smaller with shorter WT action potentials, which suggests an important role for action potential configuration. Interestingly, peak amplitude of L-type Ca2+ current (I(Ca-L)) initiated by rectangular test steps was reduced, although the voltage dependencies of contractions and currents were not altered. To explore the basis for the altered relation between contraction and I(Ca-L), Ca2+ concentrations were measured in myocytes loaded with fura 2. Diastolic concentrations of free Ca2+ and amplitudes of Ca2+ transients were similar in voltage-clamped myocytes from WT and TG4 mice. However, sarcoplasmic reticulum (SR) Ca2+ content assessed with the rapid application of caffeine was elevated in TG4 cells. Increased SR Ca2+ was accompanied by increased frequency and amplitudes of spontaneous Ca2+ sparks measured at 37 degrees C with fluo 3. These observations suggest that the gain of Ca(2+)-induced Ca2+ release is increased in TG4 myocytes. Increased gain counteracts the effects of decreased amplitude of I(Ca-L) in voltage-clamped myocytes and likely contributes to increased contraction amplitudes in field-stimulated TG4 myocytes.  相似文献   

18.
A commonly used technique to investigate strain-induced responses of adherent cells is culturing them on an elastic membrane and globally stretching the membrane. However, it is virtually impossible to acquire microscopic images immediately after the stretch with this method. Using a newly developed technique, we recorded the strain-induced increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) in rat primary alveolar type II (ATII) cells at an acquisition rate of 30ms and without any temporal delay. We can show that the onset of the mechanically induced rise in [Ca(2+)](c) was very fast (<30?ms), and Ca(2+) entry was immediately abrogated when the stimulus was withdrawn. This points at a direct mechanical activation of an ion channel. RT-PCR revealed high expression of TRPV2 in ATII cells, and silencing TRPV2, as well as blocking TRPV channels with ruthenium red, significantly reduced the strain-induced Ca(2+) response. Moreover, the usually homogenous pattern of the strain-induced [Ca(2+)](c) increase was converted into a point-like response after both treatments. Also interfering with actin/myosin and integrin binding inhibited the strain-induced increase of [Ca(2)](c). We conclude that TRPV2 participates in strain-induced Ca(2+) entry in ATII cells and suggest a direct mechanical activation of the channel that depends on FAs and actin/myosin. Furthermore, our results underline the importance of cell strain systems that allow high temporal resolution.  相似文献   

19.
The ryanodine receptor subtype 3 (RYR3) is expressed ubiquitously but its physiological function varies from cell to cell. Here, we investigated the role of a dominant negative RYR3 isoform in Ca2+ signalling in native smooth muscle cells. We used intranuclear injection of antisense oligonucleotides to specifically inhibit endogenous RYR3 isoform expression. In mouse duodenum myocytes expressing RYR2 subtype and both spliced and non-spliced RYR3 isoforms, RYR2 and non-spliced RYR3 were activated by caffeine whereas the spliced RYR3 was not. Only RYR2 was responsible for the Ca2+-induced Ca2+ release mechanism that amplified Ca2+ influx- or inositol 1,4,5-trisphosphate-induced Ca2+ signals. However, the spliced RYR3 negatively regulated RYR2 leading to the decrease of amplitude and upstroke velocity of Ca2+ signals. Immunostaining in injected cells showed that the spliced RYR3 was principally expressed near the plasma membrane whilst the non-spliced isoform was revealed around the nucleus. This study shows for the first time that the short isoform of RYR3 controls Ca2+ release through RYR2 in native smooth muscle cells.  相似文献   

20.
Recent findings from our laboratories have shown that Cd2+ has relatively specific damaging effects on the adhering and occluding junctions in the established porcine renal epithelial cell line, LLC-PK1. Results of the present studies show that the junction-perturbing effects of Cd2+ in LLC-PK1 cells are more pronounced when Cd2+ is applied to the basolateral cell surface than when it is applied to the apical surface, and that the severity of the effects is inversely related to the concentration of Ca2+ in the medium. Additional results show that exposure to sublethal concentrations of Cd2+ decreases the amount of E-cadherin that is associated with cell-cell contacts. These results suggest that Cd2+ damages Ca(2+)-dependent cell-cell junctions in LLC-PK1 cells by interacting with E-cadherin or a similar Ca(2+)-sensitive site that is oriented toward the basolateral cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号