共查询到20条相似文献,搜索用时 0 毫秒
1.
The general structure and results of quantitative studies of rat carotid body type I cells are described. In contrast to previous reports, there was no change in mitochondrial V/v% on stimulating the carotid body with 10% oxygen. The volume of cytoplasm occupied by electron-dense cored vesicles was significantly increased, whilst their density per square micrometre of cytoplasm was decreased during hypoxia. Thus, the size of vesicles is increased by hypoxic stimulation. On the basis of vesicle diameter and density we were unable to find evidence of more than one variety of type I cell. 相似文献
2.
Ross FA Rafferty JN Dallas ML Ogunbayo O Ikematsu N McClafferty H Tian L Widmer H Rowe IC Wyatt CN Shipston MJ Peers C Hardie DG Evans AM 《The Journal of biological chemistry》2011,286(14):11929-11936
Inhibition of large conductance calcium-activated potassium (BKCa) channels mediates, in part, oxygen sensing by carotid body type I cells. However, BKCa channels remain active in cells that do not serve to monitor oxygen supply. Using a novel, bacterially derived AMP-activated protein kinase (AMPK), we show that AMPK phosphorylates and inhibits BKCa channels in a splice variant-specific manner. Inclusion of the stress-regulated exon within BKCa channel α subunits increased the stoichiometry of phosphorylation by AMPK when compared with channels lacking this exon. Surprisingly, however, the increased phosphorylation conferred by the stress-regulated exon abolished BKCa channel inhibition by AMPK. Point mutation of a single serine (Ser-657) within this exon reduced channel phosphorylation and restored channel inhibition by AMPK. Significantly, RT-PCR showed that rat carotid body type I cells express only the variant of BKCa that lacks the stress-regulated exon, and intracellular dialysis of bacterially expressed AMPK markedly attenuated BKCa currents in these cells. Conditional regulation of BKCa channel splice variants by AMPK may therefore determine the response of carotid body type I cells to hypoxia. 相似文献
3.
The mammalian carotid body is enlarged under conditions of chronic hypoxaemia. There has been some discussion as to whether this is due to hypertrophy or to hyperplasia. We have subjected rats to 1, 2 or 7 days of 10% oxygen and, 4 h before removing the carotid bodies, injected each animal with vincristine sulphate, an inhibitor of mitosis. The results of this study indicate that numerous mitoses can be found in the carotid bodies of rats exposed to 10% oxygen, but not in control animals maintained in air. These experiments thus provide direct evidence that at least a proportion of the increase in size of the carotid body induced by chronic hypoxaemia is due to a cellular hyperplasia. 相似文献
4.
Xi Wang Bai-Ren Wang Xiao-Li Duan Ping Zhang Yu-Qiang Ding Yi Jia Xi-Ying Jiao Gong Ju 《The journal of histochemistry and cytochemistry》2002,50(12):1677-1684
One of the unsolved key questions in neuroimmunomodulation is how peripheral immune signals are transmitted to the brain. It has been reported that the vagus might play a role in this regard. The underlying mechanism for this immune system-to-brain communication route is related to the binding of cytokines, such as interleukin (IL)-1beta originating from activated immune cells, to their receptors in glomus cells of the vagal paraganglia. The existence of IL-1 receptor type I (IL-1RI) in vagal paraganglia has been proved. On the basis of these studies, a hypothesis is raised that the carotid body, as the largest paraganglion, might play a similar role to that of its abdominal partner. In this study we examined the distribution of IL-1RI in the carotid body by immunohistochemistry (IHC) and Western blotting techniques. The IHC results showed that almost all glomus cells in the carotid body displayed strong IL-1RI immunoreactivity. The IL-1RI-immunoreactive products were localized in the cytoplasm, nucleus, and cell membrane of the glomus cells. The Western blotting results also confirmed the existence of IL-1RI in both membranous and cytoplasmic elements of the carotid body. These results imply that the carotid body not only serves as a chemoreceptor for modulation of cardiorespiratory performance, as traditionally recognized, but also acts as a cytokine chemorereceptor for sensing immune signals. 相似文献
5.
Pannexin 1 (Panx1) channels are generally represented as non-selective, large-pore channels that release ATP. Emerging roles have been described for Panx1 in mediating purinergic signaling in the normal nervous, cardiovascular, and immune systems, where they may be activated by mechanical stress, ionotropic and metabotropic receptor signaling, and via proteolytic cleavage of the Panx1 C-terminus. Panx1 channels are widely expressed in various cell types, and it is now thought that targeting these channels therapeutically may be beneficial in a number of pathophysiological contexts, such as asthma, atherosclerosis, hypertension, and ischemic-induced seizures. Even as interest in Panx1 channels is burgeoning, some of their basic properties, mechanisms of modulation, and proposed functions remain controversial, with recent reports challenging some long-held views regarding Panx1 channels. In this brief review, we summarize some well-established features of Panx1 channels; we then address some current confounding issues surrounding Panx1 channels, especially with respect to intrinsic channel properties, in order to raise awareness of these unsettled issues for future research. 相似文献
6.
Koerner P Hesslinger C Schaefermeyer A Prinz C Gratzl M 《Journal of neurochemistry》2004,91(2):493-500
Carotid bodies harboring sensor cells for oxygen have a strategic location at the bifurcation of the carotid artery, which supplies the brain. Upon arterial hypoxia they transmit signals to the respiratory center, which increases the frequency of breathing. Dopamine is considered as the predominant transmitter of the rat carotid body sensor cells. Here we show that the rat carotid body sensor cells are the first cell type known to have the complete apparatus to synthesize, store and release both dopamine and histamine. The tyrosine hydroxylase positive dopaminergic sensor cells of juvenile rats express the histamine biosynthesis enzyme, histidine decarboxylase. Moreover, the sensor cells have not only vesicular monoamine transporter 1 (VMAT1) transporting catecholamines but also VMAT2, which is highly specific for histamine. Additionally, we found that these cells possess components of the neuroendocrine exocytosis apparatus, synaptosome-associated protein of 25 kDa (SNAP 25) and syntaxin1. The amount of histamine determined in the rat carotid body (164 pmol/carotid body) is more than 10-fold higher compared with that of dopamine. As a main effect, hypoxia significantly increased histamine release from isolated rat carotid bodies as it has been shown for dopamine. Finally, RT-PCR experiments indicate the presence of histamine receptors H1, H2 and H3 in the carotid body. Our data suggest that histamine is synthesized, stored and released upon hypoxia by dopaminergic sensor cells of the rat carotid body. 相似文献
7.
Summary The distribution of carotid body type I and periadventitial type I cells in the carotid bifurcation regions was investigated unilaterally in seven and bilaterally in two New Zealand White rabbits. Carotid body type I cells occurred in close proximity to the wall of the internal carotid artery immediately rostral to the carotid bifurcation, within a division of connective tissue with defineable but irregular borders. Caudally, and separate from the main mass of carotid body type I cells, isolated groups of periadventitial type I cells lay freely in the connective tissue around the internal carotid artery and alongside the carotid bifurcation and common carotid artery. A overall picture of the carotid body in the rabbit was reconstructed and the occurrence and significance of periadventitial type I cells discussed.The authors are indebted to Mr. Stephen Jones of the Department of Histopathology, St Bartholomew's Hospital, for expert assistance in the preparation of the material, and to Mr. A.J. Aldrich of the Department of Anatomy for photography. This work was supported by a grant from the Wellcome Trust to one of us (M. de B.D.) 相似文献
8.
Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements 总被引:29,自引:0,他引:29
A number of studies show that environmental stress conditions such as drought, high salt, and air pollutants increase polyamine levels in plant cells. However, little is understood about the physiological function of elevated polyamine levels. We report here that polyamines regulate the voltage-dependent inward K(+) channel in the plasma membrane of guard cells and modulate stomatal aperture, a plant "sensor" to environmental changes. All natural polyamines, including spermidine, spermine, cadaverine, and putrescine, strongly inhibited opening and induced closure of stomata. Whole-cell patch-clamp analysis showed that intracellular application of polyamines inhibited the inward K(+) current across the plasma membrane of guard cells. Single-channel recording analysis indicated that polyamine regulation of the K(+) channel requires unknown cytoplasmic factors. In an effort to identify the target channel at the molecular level, we found that spermidine inhibited the inward K(+) current carried by KAT1 channel that was functionally expressed in a plant cell model. These findings suggest that polyamines target KAT1-like inward K(+) channels in guard cells and modulate stomatal movements, providing a link between stress conditions, polyamine levels, and stomatal regulation. 相似文献
9.
TREK-1 is one of the important potassium channels for regulating membrane excitability. To examine the distribution of TREK-1 in the rat carotid body, we performed RT-PCR for mRNA expression and in situ hybridization and immunohistochemistry for tissue distribution of TREK-1. RT-PCR detected mRNA expression of TREK-1 in the carotid body. Furthermore, in situ hybridization revealed the localization of TREK-1 mRNA in the glomus cells. TREK-1 immunoreactivity was mainly distributed in the glomus cells and nerve fibers in the carotid body. TREK-1 may modulate potassium current of glomus cells and/or afferent nerve endings in the rat carotid body. 相似文献
10.
Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice are prone to sudden neonatal death and have reduced respiratory response to hypoxia. Here we found that PACAP-38 elevated cytosolic [Ca(2+)] ([Ca(2+)](i)) in the oxygen sensing type I cells but not the glial-like type II (sustentacular) cells of the rat carotid body. This action of PACAP could not be mimicked by vasoactive intestinal peptide but was abolished by PACAP 6-38, implicating the involvement of PAC(1) receptors. H89, a protein kinase A (PKA) inhibitor attenuated the PACAP response. Simultaneous measurement of membrane potential and [Ca(2+)](i) showed that the PACAP-mediated [Ca(2+)](i) rise was accompanied by depolarization and action potential firing. Ni(2+), a blocker of voltage-gated Ca(2+) channels (VGCC) or the removal of extracellular Ca(2+) reversibly inhibited the PACAP-mediated [Ca(2+)](i) rise. In the presence of tetraethylammonium (TEA) and 4-aminopyridine (4-AP), PACAP reduced a background K(+) current. Anandamide, a blocker of TWIK-related acid-sensitive K(+) (TASK)-like K(+) channel, occluded the inhibitory action of PACAP on K(+) current. We conclude that PACAP, acting via the PAC(1) receptors coupled PKA pathway inhibits a TASK-like K(+) current and causes depolarization and VGCC activation. This stimulatory action of PACAP in carotid type I cells can partly account for the role of PACAP in respiratory disorders. 相似文献
11.
MinK is a novel protein which induces an extremely slowly activating potassium channel when expressed in Xenopus oocytes. We discuss the properties and regulation of the current and localization and possible physiological roles of the MinK protein.Special issue dedicated to Dr. Alan N. Davison. 相似文献
12.
The results of a stereological and morphometric analysis of rat carotid body type I cell nerve endings are described. 66.9% of endings possessed symmetrical junctions. Of the remaining endings, 3.6% were presynaptic and 26% were postsynaptic to type I cells; 3.6% of endings had a reciprocal configuration. Apart from membrane specialisations, no other ultrastructural criteria were found to distinguish the different types of endings. Ventilation with 100% and 10% oxygen showed that the hypoxic mixture reduced synaptic vesicle concentration in the nerve endings; this effect was independent of the innervation to the carotid body. 相似文献
13.
Dr. M. Grönblad 《Cell and tissue research》1983,229(3):627-637
Extensive secretion by exocytosis was demonstrated in the glomus (type I) cells of the adult rat after perfusion of carotid bodies with a potassium-rich (high K) glutaraldehyde fixative. Similar secretory profiles were very rare with a glutaraldehyde fixative containing a low concentration of potassium (low K). The increase in the incidence of exocytotic profiles in glomus cells with the high K fixative was highly significant, whereas no statistical difference could be observed in the incidence of coated pits with the different fixatives. Exocytotic profiles were characterized by the following features: (1) they predominated in non-synaptic regions, but were occasionally observed near synapses between two glomus cells; they were not observed near synapses between glomus cells and nerve terminals; (2) extruded electron-dense material associated with coating of the cell membrane was frequent; (3) different stages of dissolution of the extruded granule material was evident. The possible role of exocytosis as a mode of secretion in the glomus cells and the characteristics of the new high K-glutaraldehyde fixative are discussed. 相似文献
14.
Estelle B Gauda Reed Cooper Shereé M Johnson Gabrielle L McLemore Cathleen Marshall 《Journal of applied physiology》2004,96(1):384-391
Hypoxic chemosensitivity of peripheral arterial chemoreceptors and the ventilatory response to O2 deprivation increases with postnatal development. Multiple putative neurotransmitters, which are synthesized in the carotid body (CB), are thought to mediate signals generated by hypoxia. Acetylcholine (ACh) is believed to be a major excitatory neurotransmitter participating in hypoxic chemosensitivity. However, it is not known whether ACh originates from type I cells in the CB. In these studies, we tested the hypothesis that choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) mRNAs are expressed in the CB and that mRNA levels would increase with postnatal maturation or exposure to hypoxia. Semiquantitative in situ hybridization histochemistry and immunohistochemistry were used to localize cholinergic markers within neurons and cells of the rat CB, the nodose-petrosal-jugular ganglion complex, and the superior cervical ganglion up to postnatal day 28. We show that the pattern of distribution, in tissue sections, is similar for both ACh markers; however, the level of VAChT mRNA is uniformly greater than that of ChAT. VAChT mRNA and immunoreactivity are detected abundantly in the nodose-petrosal-jugular ganglion complex in a number of microganglion cells embedded in nerve fibers innervating the CB for all postnatal groups, whereas ChAT mRNA is detected in only a few of these cells. Contrary to our hypothesis, postnatal maturation caused a reduction in ACh trait expression, whereas hypoxic exposure did not induce the upregulation of VAChT and ChAT mRNA levels in the CB, microganglion, or within the ganglion complex. The present findings indicate that the source of ACh in the CB is likely within autonomic microganglion cells and cholinergic nerve terminals. 相似文献
15.
16.
Z-Y Wang E B Olson D E Bjorling G S Mitchell G E Bisgard 《Journal of applied physiology》2008,104(3):803-808
Sustained hypoxia (SH) has been shown to cause profound morphological and cellular changes in carotid body (CB). However, results regarding whether SH causes CB type I cell proliferation are conflicting. By using bromodeoxyuridine, a uridine analog that is stably incorporated into cells undergoing DNA synthesis, we have found that SH causes the type I cell proliferation in the CB; the proliferation occurs mainly during the first 1-3 days of hypoxic exposure. Moreover, the new cells survive for at least 1 mo after the return to normoxia. Also, SH does not cause any cell death in CB as examined by the terminal deoxynucleotidyl transferase-mediated dUTP-X nick-end labeling assay. Taken together, our results suggest that SH stimulates CB type I cell proliferation, which may produce long-lasting changes in CB morphology and function. 相似文献
17.
Biophysical properties of a chloride channel in the apical membrane of a secretory epithelial cell 总被引:1,自引:0,他引:1
D R Halm G Rechkemmer R A Schoumacher R A Frizzell 《Comparative biochemistry and physiology. A, Comparative physiology》1988,90(4):597-601
1. Patch clamp studies on colonic tumor cell line T84 show the presence of chloride channels. 2. The channels are activated by forskolin, PGE2, or 8-Br-cAMP. 3. Single channel conductance was ca 40 pS at the reversal potential, increasing to 70 pS at +80 mV and decreasing to 25 pS at -80 mV. 4. Relative permeabilities were I greater than Br greater than Cl greater than F. 相似文献
18.
Li Y Chu JS Kurpinski K Li X Bautista DM Yang L Sung KL Li S 《Biophysical journal》2011,100(8):1902-1909
Histone deacetylation and acetylation are catalyzed by histone deacetylase (HDAC) and histone acetyltransferase, respectively, which play important roles in the regulation of chromatin remodeling, gene expression, and cell functions. However, whether and how biophysical cues modulate HDAC activity and histone acetylation is not well understood. Here, we tested the hypothesis that microtopographic patterning and mechanical strain on the substrate regulate nuclear shape, HDAC activity, and histone acetylation. Bone marrow mesenchymal stem cells (MSCs) were cultured on elastic membranes patterned with parallel microgrooves 10 μm wide that kept MSCs aligned along the axis of the grooves. Compared with MSCs on an unpatterned substrate, MSCs on microgrooves had elongated nuclear shape, a decrease in HDAC activity, and an increase of histone acetylation. To investigate anisotropic mechanical sensing by MSCs, cells on the elastic micropatterned membranes were subjected to static uniaxial mechanical compression or stretch in the direction parallel or perpendicular to the microgrooves. Among the four types of loads, compression or stretch perpendicular to the microgrooves caused a decrease in HDAC activity, accompanied by the increase in histone acetylation and slight changes of nuclear shape. Knocking down nuclear matrix protein lamin A/C abolished mechanical strain-induced changes in HDAC activity. These results demonstrate that micropattern and mechanical strain on the substrate can modulate nuclear shape, HDAC activity, and histone acetylation in an anisotropic manner and that nuclear matrix mediates mechanotransduction. These findings reveal a new mechanism, to our knowledge, by which extracellular biophysical signals are translated into biochemical signaling events in the nucleus, and they will have significant impact in the area of mechanobiology and mechanotransduction. 相似文献
19.
The pH-sensitivity of transepithelial K+ transport was studied in vitro in isolated vestibular dark cell epithelium from the gerbil ampulla. The cytosolic pH (pH
iwas measured microfluorometrically with the pH-sensitive dye 2,7-bicarboxyethyl-5(6)-carboxyfluorescein (BCECF) and the equivalent short-circuit current (I
sc), which is a measure for transepithelial K+ secretion, was calculated from measurements of the transepithelial voltage (V
t)and the transepithelial resistance (R
t) in a micro-Ussing chamber. All experiments were conducted in virtually HCO
3
–
-free solutions. Under control conditions, pH
iwas 7.01±0.04 (n=18), V
twas 9.1±0.5 mV, R
t16.7±0.09 cm2, and I
sc was 587±30 A/cm2 (n=49). Addition of 20 mm propionate– caused a biphasic effect involving an initial acidification of pH
i, increase in V
tand I
sc and decrease in R
tand a subsequent alkalinization of pH
i, decrease of V
tand increase of R
t. Removal of propionate– caused a transient effect involving an alkalinization of pH
i, a decrease of V
tand I
sc and an increase in R
t. pH
iin the presence of propionate– exceeded pH
iunder control conditions. Effects of propionate – on V
t, R
tand I
sc were significantly larger when propionate– was applied to the basolateral side rather than to the apical side of the epithelium. The pH
i-sensitivityof I
sc between pH 6.8 and 7.5 was –1089 A/(cm2 · pH-unit) suggesting that K+ secretion ceases at about pH
i7.6. Acidification of the extracellular pH (pH
o)caused an increase of V
tand I
sc and a decrease of R
tmost likely due to acidification of pH
i. Effects were significantly larger when the extracellular acidification was applied to the basolateral side rather than to the apical side of the epithelium. The pH
osensitivity of I
sc between pH 7.4 and 6.4 was –155 A/(cm2 · pH unit). These results demonstrate that transepithelial K+ transport is sensitive to pH
iand pH
oand that vestibular dark cells contain propionate– uptake mechanism. Further, the data suggest that cytosolic acidification activates and that cytosolic alkalinization inactivates the slowly activating K+ channel (I
sK)in the apical membrane. Whether the effect of pH
ion the I
sK channel is a direct or indirect effect remains to be determined.The authors wish to thank Drs. Daniel C. Marcus, Zhjiun Shen and Hiroshi Sunose for helpful discussions. This work was supported by grants NIH-R29-DC01098 and NIH-R01-DC00212. 相似文献
20.
In previous study we demonstrated the presence of ATP-sensitive potassium current in the inner mitochondrial membrane, which was sensitive to diazoxide and glybenclamide, in mitochondria isolated from the rat uterus. This current was supposed to be operated by mitochondrial ATP-sensitive potassium channel (mitoK(ATP)). Regulation of the mitoK(ATP) in uterus cells is not studied well enough yet. It is well known that the reactive oxygen species (ROS) can play a dual role. They can damage cells in high concentrations, but they can also act as messengers in cellular signaling, mediating survival of cells under stress conditions. ROS are known to activate mitoK(ATP) during the oxidative stress in the brain and heart, conferring the protection of cells. The present study examined whether ROS mediate the mitoK(ATP) activation in myometrium cells. Oxidative stress was induced by rotenone. ROS generation was measured by 2',7'-dichlorofluorescin diacetate. The massive induction of ROS production was demonstrated in the presence of rotenone. Hyperpolarization of the mitochondrial membrane was also detected with the use of the potential-sensitive dye DiOC6 (3,3'-dihexyloxacarbocyanine iodide). Diazoxide, a selective activator of mitoK(ATP), depolarized mitochondrial membrane either under oxidative stress or under normal conditions, while mitoK(ATP) blocker glybenclamide effectively restored mitochondrial potential in rat myocytes. Estimated value for diazoxide to mitoK(ATP) under normoxia was four times higher than under oxidative stress conditions: 5.01 +/- 1.47-10(-6) M and 1.24 +/- 0.21 x 10(-6) M respectively. The ROS scavenger N-acetylcysteine (NAC) successfully eliminates depolarization of mitochondrial membrane by diazoxide under oxidative stress. These results suggest that elimination of ROS by NAC prevents the activation of mitoK(ATP) under oxidative stress. Taking into account the higher affinity of diazoxide to mitoK(ATP) under stress conditions than under normoxia, we conclude that the oxidative stress conditions are more favourable than normoxia for the activation of mitoK(ATP). Thus we hypothesize that the ROS regulate the activity of the mitoK(ATP) in myocytes. 相似文献