首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
心绞痛的痛觉产生机制   总被引:2,自引:0,他引:2  
心绞痛是心肌细胞缺血缺氧的信号。损伤的心肌细胞释放致痛物质腺苷、H 、K ,并激活激肽系统产生缓激肽,刺激感觉神经末稍产生神经冲动,经交感、迷走神经进入中枢神经系统,沿内脏感觉传导通路到达大脑皮层形成痛觉。如果缺血程度较轻或疼痛传导通路异常,病人可发生无痛性心肌缺血。  相似文献   

2.
糖皮质激素(glucocorticoid,GC)是下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal,HPA)轴分泌的最终效应激素,通过与糖皮质激素受体(glucocorticoid receptors,GR)结合行使功能。研究发现,GC在慢性疼痛中表现双重作用,内源性GC作为抗炎类固醇通过募集免疫细胞、抑制激酶通路、调节神经胶质细胞在部分类型的神经病理性疼痛及炎性痛中发挥抑痛作用,但在应激情况下,GC水平异常升高参与中枢神经系统神经元的凋亡、兴奋、记忆等,通过调控不同的信号反应或微环境促进病理性疼痛。本文综述GC在慢性疼痛中的作用,了解其发挥镇痛或致痛的双重作用机制。  相似文献   

3.
用液氮骤冻造成大白鼠交感节前神经变性后,通过神经末梢乙酰胆碱含量、胆碱酯酶活性测定以及电刺激交感干时外周反应等研究其再生规律。结果表明冻伤后3周内再生过程进展迅速,神经结构与功能均有相当程度的恢复;3周后再生过程转慢,直至一年时各指标仍远未达到正常。这证明交感节前神经的再生过程不同于中枢及其它外周神经而独具特征。  相似文献   

4.
目的:探讨普瑞巴林对神经病理性痛大鼠行为学的影响.方法:建立大鼠神经病理性痛模型(CCI模型),取40只雄性Sprague-Dawley大鼠随机分成4组,Ⅰ组为空白对照组,Ⅱ组为假手术组,Ⅲ组为CCI+普瑞巴林治疗组,Ⅲ组在术后第1夭开始灌胃给予3 mg/kg普瑞巴林,Ⅳ组为CCI手术组.分别于术前0 d及术后1 d、3 d、5 d、7 d、9 d、11 d、14d以热辐射法测定热缩足反射潜伏期(Paw withdrawal thermal latency, PWTL),观察神经病理性痛大鼠行为学变化.结果:术后14 d,Ⅳ组和Ⅰ、Ⅱ、Ⅲ组相比较,大鼠后爪的热痛敏阈值明显降低(P<0.01);Ⅰ、Ⅱ、Ⅲ组之间相比,大鼠后爪的热痛敏阚值差异没有显著性(P>0.05).结论:普瑞巴林可以缓解神经病理性痛大鼠的慢性神经病理痛行为学表现.  相似文献   

5.
目的:通过硬膜外注射局麻药罗哌卡因,评价其对神经病理性疼痛模型大鼠的作用及其机制.方法:在坐骨神经损伤神经病理性疼痛大鼠模型(CCI)术后7d,进行硬膜外置管手术,在术后8d和11d由硬膜外导管注入罗哌卡因,观测CCI大鼠机械痛阈(PWT)和脊髓后角纤维酸性蛋白(GFAP)的变化.结果:硬膜外注射罗哌卡因能够升高CCI大鼠患肢的机械痛阈,降低脊髓后角GFAP的表达.结论:在CCI大鼠模型硬膜外注射罗哌卡因可以较长时间抑制脊髓胶质细胞的激活,从而减轻神经病理性疼痛.  相似文献   

6.
本实验观察了53例兔在不同血压水平下不同参数的腓深神经刺激对肾交感神经活动的影响。物在正常血压时,用低强度电流(3V,0.15—0.3mA,12Hz,0.5ms)刺激腓深神经可明显抑制肾交感冲动发放,静脉注射纳洛酮可以阻断此抑制效应;而用中等强度电流(10V,0.5—0.8mA)刺激腓深神经对肾交感活动没有明显抑制效应。当静脉匀速注射硝普钠使动物血压降低、肾交感冲动增加时,用中等强度刺激腓深神经可使肾交感冲动发放进一步增多,而用低强度刺激对肾交感活动无显著影响。静脉注射东莨菪碱(0.25mg/kg)可阻断低血压时刺激腓深神经引起的肾交感兴奋效应,但静脉注射纳洛酮(0.4mg/kg)却不能阻断。又当静脉匀速注射去甲肾上腺素造成动物较高血压时,肾交感冲动减少,用上述二种强度刺激腓深神经均使肾交感活动进一步受到明显抑制,此抑制效应可被静脉注射纳洛酮阻断,但不受东莨菪碱的影响。实验结果表明:刺激腓深神经引起的不同肾交感活动反应与所用刺激参数及动物血压水平和肾交感活动水平有关。刺激腓深神经引起的交感活动减弱或增强的反应,其神经机制可能不完全相同。前者可能有阿片受体的参与,而后者可能是胆碱能受体起着较重要的作用。  相似文献   

7.
目的:探讨糖尿病痛性周围神经病的神经传导特点及神经传导速度在糖尿病痛性周围神经病中的诊断价值.方法:对18例痛性周围神经病患者进行病史采集及神经系统查体.采用肌电诱发电位仪,测定患者的正中神经、尺神经、胫神经、腓总神经及腓肠神经的运动感觉神经传导速度.结果:18例患者中男性13例,女性5例.年龄40-89岁.主要表现为双足烧灼样、针刺样、过电样疼痛.神经系统查体:针刺觉减弱7例,痛觉过敏3例,音叉震动觉减弱12例,跟腱反射减弱/消失15例.18例患者中有14例神经传导速度检查结果异常,腓肠神经感觉神经检查结果异常率高,83.3%,对诊断有帮助.结论:糖尿病痛性周围神经病变出现疼痛症状时已经存在大纤维受累,故神经传导速度异常阳性率高.神经传导速度不能早期发现糖尿病痛性周围神经病,探索一种简单易行的早期筛查方法意义重大.  相似文献   

8.
周围神经损伤除了引起该神经所支配的区域出现感觉、运动和自主功能障碍之外,还可以诱发神经病理性疼痛,包括自发性疼痛、痛觉过敏和异常性疼痛。有研究发现,周围神经损伤后,正常情况下只存在于皮肤深真皮及皮下组织的交感神经纤维,会出芽至浅真皮,并与感觉神经纤维相互伴行。神经病理性疼痛的发病机制目前尚不明确,考虑到皮肤交感出芽与感觉神经纤维在皮肤分布上的密切关系,本文特就各种周围神经损伤后皮肤交感神经出芽、出芽的来源、促进交感出芽的因素、交感出芽对感觉神经功能的影响以及与神经病理性疼痛的关系进行了综述,希望对进一步深入了解周围神经损伤及其造成的神经功能异常的细胞和分子机制有所助益。  相似文献   

9.
病理性疼痛主要包括组织损伤或炎症引起的炎症痛、神经系统损伤或疾病引起的神经病理性疼痛和恶性肿瘤及治疗引起的癌症痛三大类。病理性疼痛对常规的镇痛药物反应不理想,迫切需要寻找新的对病理性疼痛更有效和更特异的治疗手段。P2X7受体作为离子通道型嘌呤能受体,在炎症痛、神经病理性疼痛和癌症痛中都具有重要作用。靶向P2X7受体的新药物将为病理性疼痛的治疗带来新的希望。该文综述了P2X7受体在三类病理性疼痛中的研究进展。  相似文献   

10.
病理性疼痛包括炎症性疼痛、神经病理性疼痛及癌症痛等。临床上,传统的止痛药对病理性疼痛止痛效果不佳或副作用较大。目前对病理性疼痛尚未有很好的治疗方案。大量研究表明,Fractalkine及其特异性受体CX3CR1通过介导神经元与胶质细胞的信号连接,增强伤害性感觉神经元兴奋性,促进外周敏感化和中枢敏感化。研究发现,FKN/CX3CR1通过调节促炎性因子IL-1β、TNF-α和信号通路P38 MAPK、NF-κB、STAT3、IP3等,在病理性痛的发生中发挥重要作用。本文阐述了Fractalkine及其受体CX3CR1在病理性疼痛中的作用,探讨其在病理性疼痛中的作用机制,为疼痛的治疗找到新的靶点。  相似文献   

11.
Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target‐derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, lead to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect one's ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti‐NGF therapy for the clinical management of pain.  相似文献   

12.
Eight patients were studied in whom a lesion within the central nervous system caused constant pain and hyperpathia. Blockade of the sympathetic supply to the periphery was carried out in each patient by stellate ganglion block or intravenous infusion of guanethidine 15 mg in 30 ml saline into a limb on the affected side. On almost every occasion the pain and hypersensitivity were reduced, sometimes completely. Thus chronic pain and hyperpathia arising from a lesion in the central nervous system may be abolished by blocking the sympathetic supply to the periphery; this effect may be achieved when not all the peripheral nerves of the affected region have had their sympathetic nerve supply blocked. Such blockade may be worth repeating in the hope of achieving lasting relief of the intractable pain.  相似文献   

13.
多觉型伤害性感受器是皮肤内专一性较强的痛觉感受器。本实验用剥制神经细束的技术,引导大鼠尾神经C类纤维的传入放电反映多觉型伤害性感受器的活动,以判定刺激交感神经对外周痛觉感受过程的调制作用。测试了57个该类感受器的单位放电,发现下述两个主要事实:(1)刺激腰骶部交感干外周端,可以显著抑制伤害性刺激(包括机械压力,直流电-钾离子,热烫等)诱发的多觉型伤害性感受器的单位放电,其作用出现较快,可使放电数减少1/3左右,后作用延续十多分钟。局部动脉注射去甲肾上腺素也产生类似的抑制效应。从而证实交感神经具有抑制痛觉感受器的作用。(2)交感神经对部分多觉型伤害性感受器活动的调制具有双重作用的特点,即对同一单位因外加刺激引起的诱发放电有抑制作用,对其自发放电则有易化作用。讨论了交感神经这一双重作用的临床意义以及针刺通过交感神经调制外周痛觉感受过程的设想。  相似文献   

14.
Static and pulsed magnetic fields have been reported to have a variety of physiological effects. However, the effect of static magnetic fields on pain perception and sympathetic function is equivocal. To address this question, we measured pain perception during reproducible noxious stimuli during acute exposure to static magnets. Pain perception, muscle sympathetic nerve activity, mean arterial pressure, heart rate, and forearm blood velocity were measured during rest, isometric handgrip, postexercise muscle ischemia, and cold pressor test during magnet and placebo exposure in 15 subjects (25 +/- 1 yr; 8 men and 7 women) following 1 h of exposure. During magnet exposure, subjects were placed on a mattress with 95 evenly spaced 0.06-T magnets imbedded in it. During placebo exposure, subjects were placed on an identical mattress without magnets. The order of the two exposure conditions was randomized. At rest, no significant differences were noted in muscle sympathetic nerve activity (8 +/- 1 and 7 +/- 1 bursts/min for magnet and placebo, respectively), mean arterial pressure (91 +/- 3 and 93 +/- 3 mmHg), heart rate (63 +/- 2 and 62 +/- 2 beats/min), and forearm blood velocity (3.0 +/- 0.3 and 2.6 +/- 0.3 cm/s). Magnets did not alter pain perception during the three stimuli. During all interventions, no significant differences between exposure conditions were found in muscle sympathetic nerve activity and hemodynamic measurements. These results indicate that acute exposure to static magnetic fields does not alter pain perception, sympathetic function, and hemodynamics at rest or during noxious stimuli.  相似文献   

15.
Previous studies have shown that observing another’s pain can evoke other-oriented emotions, which instigate empathic concern for another’s needs. It is not clear whether experiencing first-hand physical pain may also evoke other-oriented emotion and thus influence people’s moral judgment. Based on the embodied simulation literature and neuroimaging evidence, the present research tested the idea that participants who experienced physical pain would be more sympathetic in their moral judgments. Study 1 showed that ice-induced physical pain facilitated higher self-assessments of empathy, which motivated participants to be more sympathetic in their moral judgments. Study 2 confirmed findings in study 1 and also showed that State Perspective Taking subscale of the State Empathy Scale mediated the effects of physical pain on moral judgment. These results provide support for embodied view of morality and for the view that pain can serve a positive psychosocial function.  相似文献   

16.
One of the most common complications of fibrous dysplasia of bone (FD) is bone pain. Usual pain killers are often of inadequate efficacy to control this bone pain. The mechanism of bone pain in FD remains uncertain, but by analogy with bone tumors one may consider that ectopic sprouting and formation of neuroma-like structures by sensory and sympathetic nerve fibers also occur in the dysplastic skeleton. Bone pain has been reported in up to 81% of adults and 49% of children. It affects predominantly the lower limbs and the spine. The degree of pain is highly variable and adults reports more pain than children. Bisphosphonates have been shown to reduce bone pain in uncontrolled studies. Their influence on bone strength remains unknown. In a randomized trial testing alendronate, bone pain was not significantly improved. Another trial assessing the effect of risedronate is ongoing. Possible future therapies include tocilizumab, denosumab and drugs targeting nerve growth factor and its receptor TrkA.  相似文献   

17.
Prostaglandin E2 and prostacyclin (prostaglandin I2) produce hyperalgesia in animals and humans. Because there is evidence that prostaglandins contribute to pain maintained by sympathetic nervous system activity, we evaluated whether sympathetic postganglionic neurons synthesize these hyperalgesic prostaglandins, and whether production of prostaglandins by these neurons can contribute to sensitization of primary afferent nociceptors. Intradermal injection of arachidonic acid but not linoleic acid, in the rat hindpaw, produces a decrease in mechanical nociceptive threshold. This hyperalgesic effect is prevented by indomethacin, an inhibitor of prostaglandin synthesis or by prior surgical removal of the lumbar sympathetic chain. To test the hypothesis that sympathetic postganglionic neurons are the source of prostaglandins, we measured production of prostaglandin E2 and 6-keto-prostaglandin F1 alpha (the stable metabolite of prostacyclin) by homogenates of adult rat sympathetic postganglionic neurons from superior cervical ganglia. These homogenates produced significant amounts of prostaglandin E2 and 6-keto-prostaglandin F1 alpha, and most of this production is eliminated by neonatal administration of 6-hydroxydopamine which selectively destroys sympathetic postganglionic neurons. These results demonstrate that sympathetic postganglionic neurons produce prostaglandins, and supports further the hypothesis that the release of prostaglandins from sympathetic postganglionic neurons contributes to the hyperalgesia associated with sympathetically maintained pain.  相似文献   

18.
The causalgic form of the postphlebitic syndrome or reflex sympathetic dystrophy resulting from acute deep thrombophlebitis is a relatively uncommon and, unfortunately, frequently unrecognized form of the postphlebitic syndrome. The usual signs of venous insufficiency are minimal, but severe burning pain is characteristic, usually increased by dependency. The diagnosis is confirmed by phlebography and the response to a lumbar sympathetic block. A lumbar sympathectomy produces permanent pain relief.  相似文献   

19.
Acute experiments on rats were made to investigate the synaptic transmission of impulses through the inferior mesenteric sympathetic ganglion in health and in different periods after a single injection of the hepatocarcinogen, 4-dimethyl-aminoazobenzene (DAB). It was found that on the second after carcinogen injection there occurs a considerable disturbance of impulse transmission through the sympathetic ganglia. This manifested in the increased latent period of the appearance of action potentials in the intestinal and hypogastric nerves, in the prolonged process of potential conduction, and in the decreased amplitude and frequency of impulse transmission through the ganglion when stimulating the preganglionic nerve. Injection of the carcinogen leads to functional sympathectomy of organs and tissues, thereby creating the conditions for penetration of its metabolites to the cells followed by their malignancy.  相似文献   

20.
It has been demonstrated that an important clinical phenomenon often associated with visceral diseases is the referred pain to somatic structures, especially to the body area of homo-segmental innervation. It is interesting that the somatic foci of cardiac referred pain were often and mainly distributed along the heart meridian (HM), whereas the acupoints of HM have been applied to treat cardiac disease since ancient times. The purpose of this study was to investigate the neural relationship between the cardiac referred pain and the heart meridian. Fluorescent triple-labeling was injected into the pericardium, some acupoints of HM and lung meridian (LM, for control). The responses of the left cardiac sympathetic nerve and of the EMG in left HM and LM were electrophysiologically studied, when the electrical stimuli were applied to the acupoints of left HM and to the left cardiac sympathetic nerve. More double-labeled neurons in HM-heart, not in LM-heart, were observed in the ipsilateral dorsal root ganglia of the spinal segments C8-T3. Electric stimulation of the acupoints of left HM was able to elicit more responses of left cardiac sympathetic nerve than that of the LM-acupoints. Electric stimulation of the left cardiac sympathetic nerve resulted in stronger activities of EMG-response in the acupoints of left HM than in LM-acupoints. We conclude that double-labeling study has provided direct evidence for the existence of dichotomizing afferent fibers that supply both the pericardium and HM. Electrophysiological results show that HM is more closely related functionally to heart. These findings provide a possible morphological and physiological explanation for the referred cardiac pain and HM-heart interrelation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号