首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystathionine gamma-lyase of Saccharomyces cerevisiae was immobilized to aminohexyl-Sepharose through the cofactor pyridoxal 5'-phosphate and was characterized with respect to its cystathionine gamma-synthase activity. The immobilized product was so stable that it repeatedly catalyzed as many as five cycles of the reaction without losing activity.  相似文献   

2.
A DNA fragment containing the Saccharomyces cerevisiae CYS3 (CYI1) gene was cloned. The clone had a single open reading frame of 1,182 bp (394 amino acid residues). By comparison of the deduced amino acid sequence with the N-terminal amino acid sequence of cystathionine gamma-lyase, CYS3 (CYI1) was concluded to be the structural gene for this enzyme. In addition, the deduced sequence showed homology with the following enzymes: rat cystathionine gamma-lyase (41%), Escherichia coli cystathionine gamma-synthase (36%), and cystathionine beta-lyase (25%). The N-terminal half of it was homologous (39%) with the N-terminal half of S. cerevisiae O-acetylserine and O-acetylhomoserine sulfhydrylase. The cloned CYS3 (CYI1) gene marginally complemented the E. coli metB mutation (cystathionine gamma-synthase deficiency) and conferred cystathionine gamma-synthase activity as well as cystathionine gamma-lyase activity to E. coli; cystathionine gamma-synthase activity was detected when O-succinylhomoserine but not O-acetylhomoserine was used as substrate. We therefore conclude that S. cerevisiae cystathionine gamma-lyase and E. coli cystathionine gamma-synthase are homologous in both structure and in vitro function and propose that their different in vivo functions are due to the unavailability of O-succinylhomoserine in S. cerevisiae and the scarceness of cystathionine in E. coli.  相似文献   

3.
We have cloned and sequenced a full-length cDNA (1083 bp) encoding the human liver cystathionine-gamma-lyase enzyme (cystathionase). The human cystathionase sequence presented a substantial deletion of 132 bases (44 amino acids) compared to that reported for rat cystathionase, and of 135 bases (45 amino acids) compared to that reported for yeast cystathionase. After re-alignment for the missing nucleotides, the human cDNA sequence shows significant amino acid homology to that for the rat enzyme (85%) and the yeast enzyme (50%). A search for an undeleted cDNA, by the polymerase chain reaction, yielded a second clone which contained the missing 132 bases. Flanking nucleotides in the latter clone were identical to those in the cDNA clone containing the deletion. The two forms of human cystathionase deduced from the two cDNA clones may be derived from two different genes or may be splice variants.  相似文献   

4.
In Saccharomyces cerevisiae, the transport of ammonium across the plasma membrane for use as a nitrogen source is mediated by at least two functionally distinct transport systems whose respective encoding genes are called MEP1 and MEP2. Mutations in the MEP2 gene affect high affinity, low capacity ammonium transport while mutations in the MEP1 gene disrupt a lower affinity, higher capacity system. In this work, the MEP1 gene has been cloned and sequenced and its expression analyzed. The predicted amino acid sequence reveals a highly hydrophobic, 54 kDa protein with 10 or 11 putative membrane-spanning regions. The predicted Mep1p protein shares high sequence similarity with several bacterial proteins of unknown function, notably the product of the nitrogen-regulated nrgA gene of Bacillus subtilis, and with that of a partial cDNA sequence derived from Caenorhabditis elegans. The Mep1p and related proteins appear to define a new family of transmembrane proteins evolutionarily conserved in at least bacteria, fungi and animals. The MEP1 gene is most highly expressed when the cells are grown on low concentrations of ammonium or on 'poor' nitrogen sources like urea or proline. It is down-regulated, on the other hand, when the concentration of ammonium is high or when other 'good' nitrogen sources like glutamine or asparagine are supplied in the culture medium. The overall properties of Mep1p indicate that it is a transporter of ammonium. Its main function appears to be to enable cells grown under nitrogen-limiting conditions to incorporate ammonium present at relatively low concentrations in the growth medium.  相似文献   

5.
Sulfur isotope effects during the oxidation of thiosulfate by Thiobacillus versutus were found to be negligible. This result is considered in relation to other oxidative and reductive processes to assess which reactions are most likely to control the isotopic compositions of sulfur compounds in microbial sulfureta.  相似文献   

6.
7.
8.
9.
Ubiquitin-conjugating enzymes (E2s), which participate in the post-translational conjugation of ubiquitin to proteins, are encoded by a multigene family in the yeast Saccharomyces cerevisiae. E2s function in a variety of cellular activities including intracellular proteolysis, DNA repair, sporulation, and cell cycle traverse. Here, we report the cloning and characterization of a new member of the yeast UBC gene family, UBC8. UBC8 encodes a 206-amino acid protein containing a highly acidic carboxyl terminus. The primary structure of the protein is similar to that of all other known E2s, with the highest homology being to the E2 (23 kDa) of wheat germ. Haploid strains in which the UBC8 gene is disrupted are viable, and the disruption does not produce any obvious phenotype. The UBC8 protein, produced in Escherichia coli, forms thiol ester adducts with ubiquitin and, apparently, diubiquitin, but does not transfer ubiquitin to histones.  相似文献   

10.
A recombinant plasmid pool of the Saccharomyces diastaticus genome was constructed in plasmid YEp13 and used to transform a strain of Saccharomyces cerevisiae. Six transformants were obtained which expressed amylolytic activity. The plasmids each contained a 3.9-kilobase (kb) BamHI fragment, and all of these fragments were cloned in the same orientations and had identical restriction maps, which differed from the map of the STA1 gene (I. Yamashita and S. Fukui, Agric. Biol. Chem. 47:2689-2692, 1983). The glucoamylase activity exhibited by all S. cerevisiae transformants was approximately 100 times less than that of the donor strain. An even lower level of activity was obtained when the recombinant plasmid was introduced into Schizosaccharomyces pombe. No expression was observed in Escherichia coli. The 3.9-kb BamHI fragment hybridized to two sequences (4.4 and 3.9 kb) in BamHI-digested S. diastaticus DNA, regardless of which DEX (STA) gene S. diastaticus contained, and one sequence (3.9 kb) in BamHI-digested S. cerevisiae DNA. Tetrad analysis of crosses involving untransformed S. cerevisiae and S. diastaticus indicated that the 4.4-kb homologous sequence cosegregated with the glucoamylase activity, whereas the 3.9-kb fragment was present in each of the meiotic products. Poly(A)+ RNA fractions from vegetative and sporulating diploid cultures of S. cerevisiae and S. diastaticus were probed with the 3.9-kb BamHI fragment. Two RNA species, measuring 2.1 and 1.5 kb, were found in both the vegetative and sporulating cultures of S. diastaticus, whereas one 1.5-kb species was present only in the RNA from sporulating cultures of S. cerevisiae.  相似文献   

11.
Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The Saccharomyces cerevisiae alg3-1 mutant is descilbed as defectivein the biosynthesis of dolichol-linked oligosaccharides (Huffakerand Robbins, Proc. Natl. Acad. Sci. USA, 80, 7466–7470,1983). Man5GlcNAc2-PP-Dol accumulates in alg3 cells and EndoH resistant carbohydrates are transferred to protein by theoligosaccharyltransferase complex. In this study, we describethe cloning of the ALG3 locus by complementation of the temperaturesensitive growth defect of the alg3 stt3 double mutant. Theisolated ALG3 gene complements both the defect in the biosynthesisof lipidlinked oligosaccharides of the alg3-mutant and the underglycosylationof secretory proteins. The inactivation of the nonessentialALG3 gene results in the accumulation of lipid-linked Man5GlcNAc2and protein-bound carbohydrates which are completely Endo Hresistant. The ALG3 locus encodes a potential ER-transmembraneprotein of 458 amino acids (53 kDa) with a C-terminal KKXX-retrievalsequence. lipid-linked oligosaccharide N-glycosylation synthetic lethality  相似文献   

12.
cDNA clones encoding human lysozyme were isolated from a human histiocytic cell line (U-937) and a human placenta cDNA library. The clones, ranging in size from 0.5 to 0.75 kb, were identified by direct hybridization with synthetic oligodeoxynucleotides. The nucleotide sequence coding for the entire protein was determined. The derived amino acid sequence has 100% homology with the published amino acid (aa) sequence; the leader sequence codes for 18 aa. Expression and secretion of human lysozyme in Saccharomyces cerevisiae was achieved by placing the cloned cDNA under the control of a yeast gene promoter (ADH1) and the alpha-factor peptide leader sequence.  相似文献   

13.
A cDNA expression library of Trichoderma reesei RutC-30 was constructed in the yeast Saccharomyces cerevisiae. Two genes, abf1 and bxl1, were isolated by screening the yeast library for extracellular alpha-L-arabinofuranosidase activity with the substrate p-nitrophenyl-alpha-L-arabinofuranoside. The genes abf1 and bxl1 encode 500 and 758 amino acids, respectively, including the signal sequences. The deduced amino acid sequence of ABFI displays high-level similarity to the alpha-L-arabinofuranosidase B of Aspergillus niger, and the two can form a new family of glycosyl hydrolases. The deduced amino acid sequence of BXLI shows similarities to the beta-glucosidases grouped in family 3. The yeast-produced enzymes were tested for enzymatic activities against different substrates. ABFI released L-arabinose from p-nitrophenyl-alpha-L-arabinofuranoside and arabinoxylans and showed some beta-xylosidase activity toward p-nitrophenyl-beta-D-xylopyranoside. BXLI did not release L-arabinose from arabinoxylan. It showed alpha-L-arabinofuranosidase, alpha-L-arabinopyranosidase, and beta-xylosidase activities against p-nitrophenyl-alpha-L-arabinofuranosidase, p-nitrophenyl-alpha-L-arabinopyranoside, and p-nitrophenyl-beta-D- xylopyranoside, respectively, with the last activity being the highest. It was also able to hydrolyze xylobiose and slowly release xylose from polymeric xylan. ABFI and BXLI correspond to a previously purified alpha-L-arabinofuranosidase and a beta-xylosidase from T. reesei, respectively, as confirmed by partial amino acid sequencing of the Trichoderma-produced enzymes. Both enzymes produced in yeasts displayed hydrolytic properties similar to those of the corresponding enzymes purified from T. reesei.  相似文献   

14.
L-Propargylglycine, a naturally occurring gamma, delta-acetylenic alpha-amino acid, induces mechanism-based inactivation of two pyridoxal phosphate dependent enzymes of methionine metabolism: (1) cystathionine gamma-synthease, which catalyzes a gamma-replacement reaction in methionine biosynthesis, and (2) methionine gamma-lyase, which catalyzes a gamma-elimination reaction in methionine breakdown. Biphasic pseudo-first-order inactivation kinetics were observed for both enzymes. Complete inactivation is achieved with a minimum molar ratio ([propargylglycine]/[enzyme monomer]) of 4:1 for cystathionine gamma-synthase and of 8:1 for methionine gamma-lyase, consistent with a small number of turnovers per inactivation event. Partitioning ratios were determined directly from observed primary kinetic isotope effects. [alpha-2H]Propargylglycine displays kH/kD values of about 3 on inactivation half-times. [alpha-3H]-Propargylglycine gives release of tritium to solvent nominally stoichiometric with inactivation but, on correction for the calculated tritium isotope discrimination, partition ratios of four and six turnovers per monomer inactivated are indicated for cystathionine gamma-synthase and methionine gamma-lyase, respectively. The inactivation stoichiometry, using [alpha-14C]-propargylglycine, is four labels per tetramer of cystathionine gamma-synthase but usually only two labels per tetramer of methionine gamma-lyase (half-of-the-sites reactivity). Two-dimensional urea isoelectrofocusing/NaDodSO4 electrophoresis suggests (1) that both native enzymes are alpha 2 beta 2 tetramers where the subunits are distinguishable by charge but not by size and (2) that, while each subunit of a cystathionine gamma-synthase tetramer becomes modified by propargylglycine, only one alpha and one beta subunit may be labeled in an inactive alpha 2 beta 2 tetramer of methionine gamma-lyase. Steady-state spectroscopic analyses during inactivation indicated that modified cystathionine gamma-synthase may reprotonate C2 of the enzyme--inactivator adduct, so that the cofactor is still in the pyridoxaldimine oxidation state. Fully inactivated methionine gamma-lyase has lambda max values at 460 and 495 nm, which may represent conjugated pyridoximine paraquinoid that does not reprotonate at C2 of the bound adduct. Either species could arise from Michael-type addition of an enzymic nucleophile to an electrophilic 3,4-allenic paraquinoid intermediate, generated initially by propargylic rearrangement upon a 4,5-acetylenic pyridoximine structure, as originally proposed for propargylglycine inactivation of gamma-cystathionase [Abeles, R., & Walsh, C. (1973) J. Am. Chem. Soc. 95, 6124]. It is reasonable that cystathionine gamma-synthase is the major in vivo target for this natural acetylenic toxin, the growth-inhibitory effects of which are reversed by methionine.  相似文献   

15.
16.
Cloning of the RNA2 gene of Saccharomyces cerevisiae.   总被引:8,自引:4,他引:8       下载免费PDF全文
M G Lee  R A Young    J D Beggs 《The EMBO journal》1984,3(12):2825-2830
  相似文献   

17.
18.
We have cloned the gene of the Saccharomyces cerevisiae phosphate transport protein (PTP), a member of the mitochondrial anion transport protein gene family. As PTP has a blocked N-terminus, we prepared three peptides. Oligonucleotides, based on their sequences, were used to screen a Yep24-housed genomic library. A total of 2073 bases of clone Y22 code for a 311 amino acid protein (Mr 32,814), which has similarities to the anion transport proteins: a triplicate gene structure and 6 hydrophobic segments. Typical for PTP, the triplicate gene structure possesses the X-Pro-X-(Asp/Glu)-X-X-(Lys/Arg)-X-(Arg/Lys)-X (X is an unspecified amino acid) motif and the very high homology only between the first and second repeat. The 6 hydrophobic segments harbor most of the 116 amino acids that are conserved between the yeast and the beef proteins. An N-terminal-extended signal sequence, as found in the beef protein, is absent. The yeast protein has about 33% fewer basic and acidic amino acids and five fewer Cys residues than the beef protein. The protein is insensitive to N-ethylmaleimide since Cys-42 (beef) has been replaced with a Thr. Mersalyl sensitivity has been retained and must be due to one of its three cysteines. Among these three cysteines, only Cys-28, located in the first hydrophobic segment, is conserved between the yeast and the beef protein.  相似文献   

19.
A sterol C-14 reductase (erg24-1) mutant of Saccharomyces cerevisiae was selected in a fen1, fen2, suppressor background on the basis of nystatin resistance and ignosterol (ergosta-8,14-dienol) production. The erg24-1 allele segregated genetically as a single, recessive gene. The wild-type ERG24 gene was cloned by complementation onto a 12-kb fragment from a yeast genomic library, and subsequently subcloned onto a 2.4-kb fragment. This was sequenced and found to contain an open reading frame of 1,314 bp, predicting a polypeptide of 438 amino acids (M(r) 50,612). A 1,088-bp internal region of the ERG24 gene was excised, replaced with a LEU2 gene, and integrated into the chromosome of the parental strain, FP13D (fen1, fen2) by gene replacement. The ERG24 null mutant produced ergosta-8,14-dienol as the major sterol, indicating that the delta 8-7 isomerase, delta 5-desaturase and the delta 22-desaturase were inactive on sterols with the C14 = 15 double bond.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号