首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

2.
Kinetics and inhibition of Na+/K+-ATPase and Mg2+-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu2+, Zn2+, Fe2+ and.Co2+) and heavy metals (Hg2+and Pb2+) ions were studied. All investigated metals produced a larger maximum inhibition of Na+/K+-ATPase than Mg2+-ATPase activity. The free concentrations of the key species (inhibitor, MgATP2 ? , MeATP2 ? ) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu2+/Fe2+ or Hg2+/Pb2+caused additive inhibition, while Cu2+/Zn2+ or Fe2+/Zn2+ inhibited Na+/K+-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu2+/Fe2+ or Cu2+/Zn2+ inhibited Mg2+-ATPase activity synergistically, while Hg2+/Pb2+ or Fe2+/Zn2+ induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na+/K+-ATPase activity by reducing the maximum velocities (Vmax) rather than the apparent affinity (Km) for substrate MgATP2-, implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg2+-ATPase activity by Zn2+, Fe2+ and Co2+ as well as kinetic analysis indicated two distinct Mg2+-ATPase subtypes activated in the presence of low and high MgATP2 ? concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na+/K+-ATPase with various potencies. Furthermore, these ligands also reversed Na+/K+-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg2+-induced inhibition was not obtained.  相似文献   

3.
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

4.
Tissue-specific age-dependent changes were observed in Na+K+-, Ca2+-, and Mg2+-ATPase activities in tropical tasar silkworm, Antheraea mylitta Drury. Maximum enzyme activity was recorded in all the tissues on day 12 (before spinning) in control group of animals. In testis, Na+K+-, Ca2+-, and Mg2+-ATPase activities gradually increased from day 2 to day 12 during fifth larval age and level was maintained up to adult eclosion while, in ovary, a marked decline was noted up to day of adult emergence. Further, a significant and sharp rise was found in ATPase activity in silk gland tissue up to day 12 and afterwards a drastic fall was noted on day 15 (end of spinning) during fifth larval age.Administration of T4 to fifth stage larvae (1 hr old) at doses 0.5–2.0 μg/g significantly elevated the Na+K+-, Ca2+-, and Mg2+-ATPase activities in larval and pupal gonads in a dose-dependent fashion. But, in moths, the enhancement was very much confined to Na+K+- and Ca2+-ATPase in testes and only Ca2+-ATPase in ovaries. Again, in silk glands thyroxine (0.5–2.0 μg/g) caused a significant rise in the all ion-dependent ATPase activities only during the fifth larval stage. Interestingly, higher doses of T4 (4.0 μg/g) caused a significant reduction in Na+K+-, Ca2+- and Mg2+-ATPase in all the tissues almost all the days studied so far. However, lower doses of T4 (0.1 and 0.25 μg/g) remained ineffective in altering the different ion-specific ATPase activities. This study suggests, that mammalian thyroxine has a metabolic influence showing biphasic nature of action in tasar silkworm ATPase system.  相似文献   

5.
The objective of the present study was to investigate the effects of preincubation of hippocampus homogenates in the presence of homocysteine or methionine on Na+, K+-ATPase and Mg2+-ATPase activities in synaptic membranes of rats. Homocysteine significantly inhibited Na+, K+-ATPase activity, whereas methionine had no effect. Mg2+-ATPase activity was not altered by the metabolites. We also evaluated the effect of incubating glutathione, cysteine, dithiothreitol, trolox, superoxide dismutase and GM1 ganglioside alone or incubation with homocysteine on Na+, K+-ATPase activity. Tested compounds did not alter Na+, K+-ATPase and Mg2+-ATPase activities, but except for trolox, prevented the inhibitory effect of homocysteine on Na+, K+-ATPase activity. These results suggest that inhibition of this enzyme activity by homocysteine is possibly mediated by free radicals and may contribute to the neurological dysfunction found in homocystinuric patients.  相似文献   

6.
Hepatic Na+-K+-ATPase and Mg2+-ATPase activities of male green lizards declined during the maturation phase (juvenile to 1-year-old) and stabilized thereafter. On the other hand, the Ca2+-ATPase activity of the liver declined during the later half of the life span (1-year-old to 2–4-year-old). Starvation stress induced a decline in hepatic Na+-K+-ATPase and Mg2+-ATPase activities of juvenile lizards and caused an increase in 1-year-old and 2–4-year-old counterparts. The Ca2+-ATPase activity declined only in starved 1-year-old lizards. Following cold stress, the hepatic Na+-K+-ATPase activity of juvenile lizards showed a higher degree of decline than 2–4-year-old counterparts. The Mg2+-ATPase activity declined in cold-stressed juvenile lizards, but the parameter was elevated in similarly treated 1-year-old lizards. On the other hand, the increase in Ca2+-ATPase activity in response to cold stress was confined only to 2–4-year-old lizards.  相似文献   

7.
Na+,K+-ATPase and Mg2+-ATPase activities were determined in the synaptic plasma membranes from hippocampus of rats subjected to chronic and acute proline administration. Na+,K+-ATPase activity was significantly reduced in chronic and acute treatment by 33% and 40%, respectively. Mg2+-ATPase activity was not altered by any treatment. In another set of experiments, synaptic plasma membranes were prepared from hippocampus and incubated with proline or glutamate at final concentrations ranging from 0.2 to 2.0 mM. Na+,K+-ATPase, but not Mg2+-ATPase was inhibited (30%) by the two amino acids. In addition, competition between proline and glutamate for the enzyme activity was observed, suggesting a common binding site for these amino acids. Considering that Na+,K+-ATPase activity is critical for normal brain function, the results of the present study showing a marked inhibition of this enzyme by proline may be associated with the neurological dysfunction found in patients affected by type II hyperprolinemia.  相似文献   

8.
ATP and adenylylimidodiphosphate (AdoPP[NH]P) bind to (Na+ + K+)-ATPase in the absence of Mg2+ (EDTA present) with a homogeneous but 15-fold different affinity, the Kd values being 0.13 μM and 1.9 μM, respectively. The binding capacities of the two nucleotides are nearly equal and amount to 3.9 and 4 nmol/mg protein or 1.7 and 1.8 mol/mol (Na+ + K+)-ATPase, respectively. The Kd value for ATP is equal to the Km for phosphorylation by ATP (0.05–0.25 μM) and the binding capacity is equivalent to the phosphorylation capacity of 1.8 mol/mol (Na+ + K+)-ATPase. Hence, the enzyme contains two high-affinity nucleotide binding and phosphorylating sites per molecule, or one per α-subunit. Additional low-affinity nucleotide binding sites are elicited in the presence of Mg2+, as shown by binding studies with the non-phosphorylating (AdoPP[NH]P). The Kd and binding capacity for AdoPP[NH]P at these sites is dependent on the Mg2+ concentration. The Kd increases from 0.06 mM at 0.5 mM Mg2+ to a maximum of 0.26 mM at 2 mM Mg2+ and the binding capacity from 1.5 nmol/mg protein at 0.5 mM Mg2+ to 3.3 nmol/mg protein at 4 mM Mg2+. Extrapolation of a double reciprocal plot of binding capacity vs. total Mg2+ concentration yields a maximal binding capacity at infinite Mg2+ concentration of 3.8 nmol/mg protein or 1.7 mol/mol (Na+ + K+)-ATPase. The Kd for Mg2+ at the sites, where it exerts this effect, is 0.8 mM. The Kd for the high-affinity sites increases from 1.5–1.9 μM in the absence of Mg2+ to a maximum of 4.2 μM at 2 mM Mg2+ concentration. The binding capacity of these sites (1.8 mol/mol enzyme) is independent of the Mg2+ concentration. Hence, Mg2+ induces two low-affinity non-phosphorylating nucleotide binding sites per molecule (Na+ + K+)-ATPase in addition to the two high-affinity, phosphorylating nucleotide binding sites.  相似文献   

9.
This study examined the status of sarcolemmal Na+/K+-ATPase activity in rat heart under conditions of Ca2+-paradox to explore the existence of a relationship between changes in Na+/K+-pump function and myocardial Na+ as well as K+ content. One min of reperfusion with Ca2+ after 5 min of Ca2+-free perfusion reduced Na+/K+-ATPase activity in the isolated heart by 53% while Mg2+-ATPase, another sarcolemmal bound enzyme, retained 74% of its control activity. These changes in sarcolemmal ATPase activities were dependent on the duration and Ca2+ concentration of the initial perfusion and subsequent reperfusion periods; however, the Na+/K+-ATPase activity was consistently more depressed than Mg2+-ATPase activity under all conditions. The depression in both enzyme activities was associated with a reduction in Vmax without any changes in Km values. Low Na+ perfusion and hypothermia, which protect the isolated heart from the Ca2+-paradox, also prevented reperfusion-induced enzyme alterations. A significant relationship emerged upon comparison of the changes in myocardial Na+ and K+ content to Na+/K+-ATPase activity under identical conditions. At least 60% of the control enzyme activity was necessary to maintain normal cation gradients. Depression of the Na+/K+-ATPase activity by 60-65% resulted in a marked increase and decrease in intracellular Na+ and K+ content, respectively. These results suggest that changes in myocardial Na+ and K+ content during Ca2+-paradox are related to activity of the Na+/K+-pump; the impaired Na+/K+-ATPase activity may lead to augmentation of Ca2+-overload via an enhancement of the Na+/Ca2+-exchange system.  相似文献   

10.
This paper investigates the kinetic parameters of Na+–K+-ATPase in glial, neuronal, and synaptosomal enriched fractions isolated from rabbit cerebral cortex. Under normal conditions, kinetic parameters-Vmax and K 0.5 K+ -of Na+–K+-ATPase are the same in the three fractions, suggesting that this enzyme behaves as the same molecular entity. Following a cryogenic lesion, the alterations of these parameters appear to be different in the different fractions. These data suggest that the same enzyme exhibits various responses when exposed to the same pathological event. The dissimilar lipid composition of the Na+–K+-ATPase environment, and/or different adaptative responses to abnormal ion concentrations in glial, neuronal, and synaptosomal fractions could account for these different responses.  相似文献   

11.
The effects of three amino group reagents on the activity of (Na++K+)-ATPase3 and its component K+-stimulatedp-nitrophenylphosphatase activity from rabbit kidney outer medulla have been studied. All three reagents cause inactivation of the enzyme. Modification of amino groups with trinitrobenzene sulfonic acid yields kinetics of inactivation of both activities, which depend on the type and concentration of the ligands present. In the absence of added ligands, or with either Na+ of Mg2+ present, the enzyme inactivation process follows complicated kinetics. In the presence of K+, Rb+, or Tl+, protection occurs due to a change of the kinetics of inactivation toward a first-order process. ATP protects against inactivation at a much lower concentration in the absence than in the presence of Mg2+ (P 50 6 µM vs. 1.2 mM). Under certain conditions (100 µM reagent, 0.2 M triethanolamine buffer, pH 8.5) modification of only 2% of the amino groups is sufficient to obtain 50% inhibition of the ATPase activity. Modification of amino groups with ethylacetimidate causes a nonspecific type of inactivation of (Na++K+)-ATPase. Mg2+ and K+ have no effects, and ATP only a minor effect, on the degree of modification. The K+-stimulatedp-nitrophenylphosphatase activity is less inhibited than the (Na++K+)-ATPase activity. Half-inhibition of the (Na++K+)-ATPase is obtained only after 25% modification of the amino groups. Modification of amino groups with acetic anhydride also causes nonspecific inactivation of (Na++K+)-ATPase. Mg2+ has no effect, and ATP has only a slight protecting effect. The K+-stimulatedp-nitrophenylphosphatase activity is inhibited in parallel with the (Na++K+)-ATPase activity. Half-inactivation of the (Na++K+)-ATPase activity is obtained after 20% modification of the amino groups.This article is No. 52 in the series Studies on (Na++K+)-Activated ATPase.  相似文献   

12.
1. (1) VO3 combines with high affinity to the Ca2+-ATPase and fully inhibits Ca2+-ATPase and Ca2+-phosphatase activities. Inhibition is associated with a parallel decrease in the steady-state level of the Ca2+-dependent phosphoenzyme.
2. (2) VO3 blocks hydrolysis of ATP at the catalytic site. The sites for VO3 also exhibit negative interactions in affinity with the regulatory sites for ATP of the Ca2+-ATPase.
3. (3) The sites for VO3 show positive interactions in affinity with sites for Mg2+ and K+. This accounts for the dependence on Mg2+ and K+ of the inhibition by VO3. Although, with less effectiveness, Na+ substitutes for K+ whereas Li+ does not. The apparent affinities for Mg2+ and K+ for inhibition by VO3 seem to be less than those for activation of the Ca2+-ATPase.
4. (4) Inhibition by VO3 is independent of Ca2+ at concentrations up to 50 μM. Higher concentrations of Ca2+ lead to a progressive release of the inhibitory effect of VO3.
Keywords: Ca2+-ATPase; Vanadate inhibition; K+; Li+; (Red cell membrane)  相似文献   

13.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4 degrees C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na(+)/K(+)-ATPase and Mg(2+)-ATPase, retained 70-80% activity after the adsorption. In addition, adsorption stabilizes Na(+)/K(+)-ATPase and Mg(2+)-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na(+)/K(+)-ATPase and Mg(2+)-ATPase and their sensitivity to and mechanism of Cd(2+)- or Hg(2+)-induced inhibition. The only exception is the "high affinity" Mg(2+)-ATPase moiety, whose affinity for ATP and sensitivity toward Cd(2+) were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

14.
In the present study we investigated the effect of acute administration of L-arginine on Na+,K+-ATPase and Mg2+-ATPase activities and on some parameters of oxidative stress (chemiluminescence and total radical-trapping antioxidant parameter-TRAP) in midbrain of adult rats. We also tested the effect of L-NAME on the effects produced by arginine. Sixty-day-old rats were treated with an acute intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II), L-NAME (2 mg/kg) (group III) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group IV). Na+,K+-ATPase activity was significantly reduced in the arginine-treated rats, but was not affected by other treatments. In contrast, Mg2+-ATPase activity was not altered by any treatment. Furthermore, chemiluminescence was significantly increased and TRAP was significantly decreased in arginine-treated rats, whereas the simultaneous injection of L-NAME prevented these effects. These results demonstrate that in vivo arginine administration reduces Na+,K+-ATPase activity possibly through free radical generation induced by NO formation.  相似文献   

15.
Hyperhomocysteinemia occurs in homocystinuria, an inherited metabolic disease clinically characterized by thromboembolic episodes and a variable degree of neurological dysfunction whose pathophysiology is poorly known. In this study, we induced elevated levels of homocysteine (Hcy) in blood (500 M), comparable to those of human homocystinuria, and in brain (60 nmol/g wet tissue) of young rats by injecting subcutaneously homocysteine (0.3-0.6 mol/g of body weight) twice a day at 8-hr intervals from the 6th to the 28th postpartum day. Controls received saline in the same volumes. Na+,K+-ATPase and Mg2+-ATPase activities were determined in the hippocampus of treated Hcy- and saline-treated rats. Chronic administration of Hcy significantly decreased (40%) Na+,K+-ATPase activity but did not alter Mg2+-ATPase activity. Considering that Na+,K+-ATPase plays a crucial role in the central nervous system, our results suggest that the brain dysfunction found in homocystinuria may be related to the reduction of brain Na+,K+-ATPase activity.  相似文献   

16.
Four stable hybridoma cell lines secreting antibodies specific to the membrane (Na+ + K+)-dependent ATPase isolated from lamb kidney medulla have been produced by fusing mouse myeloma cells with spleen cells from immunized mice. These cell lines produce IgG γ1 heavy chain and κ light chain antibodies which are directed against the catalytic or α-subunit of the (Na+ + K+)-ATPase enzyme. Binding studies, using antibodies that were produced by growing hybridomas in vivo and purified by affinity column chromatography, suggest a somewhat higher affinity of these antibodies for the isolated α-subunit than for the ‘native’ holoenzyme. In addition, these monoclonal antibodies show no reactivity with either the glycoprotein (β) subunit of the lamb enzyme nor the (Na+ + K+)-ATPase from rat kidney, an ouabain-insensitive organ. Cotitration binding experiments have shown that the antibodies from two cell lines originally isolated independently from the same culture plate well population of fused cells bind to the same determinant site and are probably the same antibody. Cotitration and competition binding studies with two other antibodies have revealed two additional distinct antibody binding sites which appear to have little overlap with the first site. One of the three different antibodies isolated caused a partial inhibition of the (Na+ + K+)-ATPase activity. This antibody appears to be directed against a specific functionally important site of the α-subunit and is a competitive inhibitor of ATP binding. Under optimum conditions of ATPase activity, this inhibitory effect is not altered by the presence of the other two antibodies.  相似文献   

17.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

18.
Alcohol intake is associated with numerous degenerative disorders, and the detrimental effects of alcohol may be due to its influence on plasma membrane and cellular transport systems. The aim of the present study was to compare in vitro and in vivo effects of ethanol on rabbit erythrocyte ATPase activities and correlate them with ethanol-induced oxidative stress. Age-matched male rabbits were given 5% ethanol in 2% sucrose solution, for 6 weeks ad libitum; control animals were given tap water. Daily intake of ethanol was 5 g/kg body weight; this experimental regimen resulted in an average serum ethanol concentration of 16.77 ± 2.00 mM/l. After this period, blood was collected, serum ethanol concentration was determined and erythrocyte membranes were prepared according to the method of Post et al. Activities of Na+/K+- and Mg2+-ATPases were determined. Thiobarbituric acid-reactive substance (TBARS) assay was used to detect levels of lipid peroxidation, a major indicator of oxidative stress. In vitro ethanol inhibits both Na+/K+-ATPase and Mg2+-ATPase, but Na+/K+-ATPase is more sensitive to the ethanol-induced inhibition. Increasing concentration of ethanol increased TBARS production, but significant difference was attained only at 5 and 12.5 mM of ethanol. Chronic ethanol consumption induced significant increase in Na+/K+- and Mg2+-ATPase activity, and TBARS production. Our results suggest that increased ATPase activity induced by chronic ethanol consumption is due to oxidative, induced modification of membrane phospholipids and proteins, which are responsible for inhibition of ATPase activity. Increased production of TBARS induced by in vitro exposure to ethanol is not the only factor that influences ATPases activity. Further research is needed to elucidate this relationship.  相似文献   

19.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

20.
Distal colon absorbs K+ through a Na+-independent, ouabain-sensitive H+/K+-exchange, associated to an apical ouabain-sensitive H+/K+-ATPase. Expression of HKα2, gene associated with this ATPase, induces K+-transport mechanisms, whose ouabain susceptibility is inconsistent. Both ouabain-sensitive and ouabain-insensitive K+-ATPase activities have been described in colonocytes. However, native H+/K+-ATPases have not been identified as unique biochemical entities. Herein, a procedure to purify ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon is described. H+/K+-ATPase is Mg2+-dependent and activated by K+, Cs+ and NH4+ but not by Na+ or Li+, independently of K+-accompanying anion. H+/K+-ATPase was inhibited by ouabain and vanadate but insensitive to SCH-28080 and bafilomycin-A. Enzyme was phosphorylated from [32P]-γ-ATP, forming an acyl-phosphate bond, in an Mg2+-dependent, vanadate-sensitive process. K+ inhibited phosphorylation, effect blocked by ouabain. H+/K+-ATPase is an α/β-heterodimer, whose subunits, identified by Tandem-mass spectrometry, seems to correspond to HKα2 and Na+/K+-ATPase β1-subunit, respectively. Thus, colonic ouabain-sensitive H+/K+-ATPase is a distinctive P-type ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号