共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the performance of Coptera haywardi (Ogloblin) (Diapriidae) and Pachycrepoideus vindemiae (Rondani) (Pteromalidae), both hymenopteran pupal parasitoids of Anastrepha spp. (Diptera: Tephritidae). Performance was studied by manipulating the following environmental conditions in the laboratory: (1) soil type, (2) soil moisture content, (3) soil compaction, and (4) depth at which pupae were buried in the soil. There were two experiments: in the first, exposure time of pupae was held constant and in the second, it varied. In the first experiment, C. haywardi was significantly more effective than P. vindemiae in parasitizing fly pupae. With exposure time held constant (36 h), only soil type and pupal burial depth were significantly related to parasitism rates. While P. vindemiae only parasitized pupae located on the soil surface, C. haywardi attacked pupae that were buried up to 5 cm deep, performing better in clayey than in loamy soil. In the second experiment, exposure time (24, 36, 48, and 72 h) had no significant effect on parasitism rates, but soil type did. P. vindemiae again only attacked pupae on the soil surface while C. haywardi was also able to parasitize pupae that were buried up to 5 cm deep. We conclude that C. haywardi represents a viable candidate to replace the environmentally unfriendly P. vindemiae in augmentative biological control programs against fruit flies. 相似文献
2.
Classical biological control is suggested as a tool worth developing now for possible future use in the integrated pest management of the Mediterranean fruit fly (Medfly),Ceratitis capitata(Wiedemann), in California. Three factors that impact broadly on developing and implementing such a biological control program are: (1) the question of Medfly establishment, (2) quarantine considerations, and (3) agricultural and urban concerns. Each of these factors and their combined effects must be considered when discussing biological control of Medfly in California as shaped by historical perspectives on Medfly invasions, methods of Medfly eradication, and past biological control efforts against Medfly. We believe that biological control research should play a foundational role in any future Medfly management programs in California. Development of biological control should involve life history studies of Medfly and its natural enemies in their area of endemicity in sub-Saharan, southeast Africa. Medfly has been studied and should continue to be studied in areas it has invaded, because information derived from such studies provides insights into the potential distribution, abundance, and impact of Medfly populations in California. A plan for a biological research program on Medfly and its relatives and a biological control strategy are presented. 相似文献
3.
The reproductive biology of Fopius ceratitivorus Wharton, a recently discovered African parasitoid, was studied in quarantine in Hawaii to facilitate its mass production for biological control of the Mediterranean fruit fly, Ceratitis capitata. Mean longevity of host-deprived and ovipositing females was 17.3 ± 0.9 d and 16.2 ± 0.5 d, respectively. Ovarian maturation peaked at 61.6 mature eggs per female on the fifth day after eclosion and declined thereafter. Mean number of offspring produced per day by mated females was 5.1 ± 0.4, and realized fecundity expressed as total eggs deposited during the female’s life time was 107.8 ± 12.8. Females were more attracted, to and reproduced significantly more, in fruit substrates containing odors of adult flies and eggs rather than fruit substrates artificially inoculated with fly eggs. Our findings suggest that F. ceratitivorus is a promising new parasitoid for biological control of C. capitata in Hawaii. 相似文献
4.
Maria-Angeles Castillo Pilar Moya Enrique Hernndez Eduardo Primo-Yúfera 《Biological Control》2000,19(3):274
The effectiveness of seven strains of entomopathogenic fungi against Ceratitis capitata adults was evaluated in the laboratory. Adults were susceptible to five of seven aqueous suspensions of conidia. Metarhizium anisopliae and strain CG-260 of Paecilomyces fumosoroseus were the most pathogenic fungi, with 10-day LD50 values of 5.1 and 6.1 × 103 conidia/fly, respectively, when applied topically. Sublethal effects on fecundity and fertility of the fungal-exposed females were also studied. The most effective fungus in reducing fecundity was P. fumosoroseus CECT 2705, with reductions on the order of 65% at 1 × 106 conidia/fly. M. anisopliae and Aspergillus ochraceus also showed significant reductions of fecundity (40–50% for most of the assayed concentrations). Fertility was moderately affected by the fungi. M. anisopliae at 1 × 106 conidia/fly was the most effective fungus, showing egg eclosion reduction of over 50% compared with the control. In addition, culture broth dichloromethane extracts from the entomopathogenic fungi were tested for insecticide activity against C. capitata, including effects on fecundity and fertility. The extract from M. anisopliae was the most toxic, resulting in about 90% mortality at a concentration of 25 mg/g of diet; under these conditions, fecundity and fertility of treated females were reduced by 94 and 53%, respectively, compared with untreated controls. 相似文献
5.
Abiotic factors affecting Diachasmimorpha longicaudata (Hymenoptera: Braconidae) activity as a natural enemy of Ceratitis capitata (Diptera: Tephritidae) under semi‐natural conditions in the Mediterranean region 下载免费PDF全文
A. Harbi F. Beitia B. Chermiti L. de Pedro F. Ferrara J. D. Asís C. Polidori J. Tormos B. Sabater‐Muñoz 《Journal of Applied Entomology》2018,142(8):755-764
The larval–pupal endoparasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is currently the most commonly employed biological control agent against Tephritid fruit flies in the Americas. However, this parasitoid remains largely ignored and is not used in many regions, including the Mediterranean Basin. In this study, the potential of D. longicaudata as a biocontrol agent against the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae) was addressed in an area of eastern Spain (the Valencian community). The parasitic activity of parasitoids and the effects of climatic conditions were evaluated throughout a 1‐year period in field‐cage experiments in which parasitoids were confined with apples artificially infested with medfly larvae. The following parameters were calculated and related statistically to several environmental conditions: the parasitism rate, the induced mortality and progeny sex ratio. The results show that D. longicaudata is able to parasitize medfly larvae throughout the year under semi‐natural conditions. Important fluctuations in the parasitism rate (from almost zero to 42%) and the induced mortality (from 6% to 80%) were partially influenced by climatic conditions. The parasitism rate increased with mean temperature and decreased with mean relative humidity, while the induced mortality decreased with minimum relative humidity. The optimal climatic conditions for the activity of the parasitoid were a mean temperature of 16–24°C combined with a relative humidity of 45%–60%. Overall, these results suggest that reduction in the medfly population due to D. longicaudata activity is feasible and provide information about the optimal time period for parasitoid release in the field. In conclusion, D. longicaudata has a significant potential to control C. capitata in the Mediterranean region. 相似文献
6.
Marc F Schetelig Carlos Caceres Antigone Zacharopoulou Gerald Franz Ernst A Wimmer 《BMC biology》2009,7(1):4
Background
The sterile insect technique (SIT) is an environment-friendly method used in area-wide pest management of the Mediterranean fruit fly Ceratitis capitata (Wiedemann; Diptera: Tephritidae). Ionizing radiation used to generate reproductive sterility in the mass-reared populations before release leads to reduction of competitiveness. 相似文献7.
The endoparasitoidCoptera haywardi(Ogloblin) (Diapriidae) was discovered in Mexico attacking the pupae of the Mexican fruit fly,Anastrepha ludens(Loew). Typically, parasitoids of Diptera Cychlorrhapha pupae develop as ectoparasitoids and are generalists that attack hosts in a number of families. Aspects of the bionomics ofC. haywardiwere compared to those of two chalcidoid ectoparasitoids,Dirhinus himalayanusWestwood andSpalangia geminaBoucek.C. haywardideveloped in three genera of Tephritidae, but not in species of other families. The two species of chalcidoids developed in all the calypterate and acalypterate hosts to which they were exposed. In an olfactometerC. haywardipreferredAnastrepha suspensa(Loew) pupae, while the chalcidoids preferred the pupae ofMusca domestica L.This preference inS. geminawas diminished in insects that had been reared onA. suspensa. C. haywardioviposited in theA. suspensapupae that had been previously parasitized by the braconidDiachasmimorpha longicaudata(Ashmead). However, it completed development only in unparasitized pupae. Mortality of the primary parasitoid due toD. himalayanuswas approximately two-thirds the mortality inflicted on the host fly.S. geminadid not discriminate between parasitized and unparasitized pupae ofA. suspensaand developed in both.C. haywardiappears to have a more restricted host range relative to chalcidoid pupal parasitoids and this may be due to its endoparasitic development. 相似文献
8.
Samira A. Mohamed Robert A. Wharton Georg von Mrey Fritz Schulthess 《Biological Control》2006,39(3):262-271
Tetrastichus giffardii Silvestri is a gregarious eulophid endoparasitoid of several tephritid fruit fly species. Host stage suitability was studied using nine age groups of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), namely, eggs less than 24 h and between 24 and 48 h old, and 1- to 7-day-old larvae. Life table studies for T. giffardii using C. capitata as host were done at 26 ± 5 °C and 55–60% RH. Egg load in relation to age of the female parasitoid was also assessed as was the effect of host deprivation on adult longevity. Host acceptance and suitability were examined with respect to eight species of tephritids. Potential hosts so tested were five Ceratitis species, the Medfly, C. capitata, the mango fruit fly, Ceratitis cosyra (Walker), the Natal fruit fly, Ceratitis rosa Karsch, Ceratitis fasciventris (Bezzi), and Ceratitis anonae Graham; two Bactrocera species, the melon fruit fly, Bactrocera cucurbitae (Coquillett) and the newly invasive Bactrocera invadens Drew, Tsuruta, and White; and one Dacus species, the lesser pumpkin fly, Dacus ciliatus Loew. No parasitoids were obtained from eggs while all larval stages were suitable though at varying degrees. Parasitism and number of progeny was related to host age in a curvilinear manner with maxima at 4- to 5-day-old larvae. By contrast, development time decreased with age of host larvae while sex ratio was not affected. The intrinsic rate of increase was 0.17 ± 0.01; gross and net reproductive rates were 64.9 ± 4.3 and 44.9 ± 3.8, respectively. Non-ovipositing females lived significantly longer than ovipositing ones. The females accepted all host species tested, but only C. capitata, D. ciliatus and, to a much lesser extent, C. cosyra were suitable. In the remaining host species, most eggs were encapsulated. In C. capitata and D. ciliatus, percent parasitism was similar, but number of progeny was lower and the sex ratio, as the proportion of females, was higher when the parasitoid was reared on D. ciliatus. Progeny per puparium were also similar for the two hosts. In the light of these results it can be concluded that T. giffardii has a narrow host range, but it attacks and successfully develops in larvae representing a wide range of ages. 相似文献
9.
10.
In the state of Veracruz, Mexico, fruits from 38 sites at various altitudes were collected monthly over a period of 2 years, and the tephritid fruit flies of the genus Anastrepha and associated parasitoids that emerged from these fruits were identified and counted. Of the 26 species of fruits that contained Anastrepha larvae, 18 species also contained a total of 10 species of Anastrepha parasitoids. These consisted of 4 native and 1 exotic species of opiine braconid larval–pupal parasitoids, 2 native species of eucoilid larval–pupal parasitoids, 1 exotic species of eulophid larval–pupal parasitoid, 1 exotic species of pteromalid pupal parasitoid, and 1 native species of diapriid pupal parasitoid. Overall parasitism (including flies from fruit species that bore no parasitoids) was 6% and was greatest, 16%, at 600–800 m in altitude. The relative contributions of individual parasitoid species to overall parasitism were frequently influenced by both the altitude (and correlated changes in temperature and precipitation) and the species of plant in which the Anastrepha larvae were found. This was particularly the case among the more abundant and widespread Braconidae. To distinguish the role of altitude from that of the distributions of the host plants, these braconids were examined in 4 individual species of fruit that grew over a broad range of altitudes. In guava (Psidium guajava L.) and “jobo” (Spondias mombin L.) the parasitoid Doryctobracon areolatus (Szepligeti) was relatively more common at low altitudes. Its congener, Doryctobracon crawfordi (Viereck), was relatively more abundant at high altitudes in sour orange (Citrus aurantium L.). Utetes anastrephae (Viereck) became relatively more common at higher altitudes in S. mombin, whereas Diachasmimorpha longicaudata (Ashmead) tended to become relatively rare at the highest altitudes in C. aurantium, but increased at high altitudes in P. guajava compared to other braconids. Different altitudinal patterns of abundance in different fruits suggests the importance of both biotic and abiotic factors in parasitoid distributions. We discuss the effect of an expanding agricultural frontier on parasitoid abundance and relate our findings to the design of a fruit fly biological control program that tailors mass releases to parasitoid climate preferences. 相似文献
11.
Sergio Ovruski Guido Van Nieuwenhove Laura Bezdjian Patricia Albornoz-Medina Pablo Schliserman 《Biocontrol Science and Technology》2012,22(2):187-202
Ceratitis capitata (or medfly) is one of the major pests currently affecting fruit crops in northwestern Argentinian Citrus-producing areas. Medfly populations are sustained in large exotic fruits, such as Citrus paradisi, Citrus aurantium and Citrus sinensis, which are known to hinder the activity of almost all native parasitoid species. Therefore, a feasible approach to controlling medfly involves the use of exotic parasitoids such as Diachasmimorpha longicaudata. In this study, the prediction that parasitoid females would be proficient at finding medfly larvae infesting the Citrus species mentioned earlier was tested. Particularly, the variation in fruit species preference by parasitoid females, the efficacy of the parasitoid to kill medfly and the effect of host density on parasitoid performance were determined. Parasitoids were allowed to forage for 8 h on grapefruits and oranges artificially infested with medfly larvae under controlled (laboratory) and uncontrolled (field cage) environmental conditions. Fruit choice and no-choice tests were performed. Results were assessed by comparing the number of female visits to and ovipositor insertions into the fruit, and parasitoid emergence, parasitism and additional host mortality percentages. Parasitoid preference for visiting larger fruits (sour orange and grapefruit) may be related to the increased fruit surface area. Ovipositional activity on fruit was influenced by the variation of the larval host density per unit of fruit surface. The higher parasitism rates recorded from sweet orange would be mainly a result of both increased host density and fruit physical features. Nevertheless, D. longicaudata showed the capacity to parasitise hosts in all Citrus species tested. 相似文献
12.
13.
I. Garrido-Jurado J. Torrent V. Barrón A. Corpas E. Quesada-Moraga 《Biological Control》2011,58(3):277-285
The Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), is the major tephritid pest in the Mediterranean region. This insect may overwinter as pupae inside fruits or in soil. Therefore, infection with entomopathogenic fungi is a potentially useful control technique during the insect’s soil-dwelling stage. Entomopathogenic fungi have an important role in Integrated Pest Management programs as an alternative to conventional chemical control, but they have been usually selected on the basis of laboratory results with little regard to fungal ecology. In this work, we designed several experiments to study the availability and movement of the EF Beauveria bassiana (Balsamo) Vuill. and Metarhizium anisopliae (Metsch.) conidia in 16 soils differing widely in pH, texture, organic matter, and carbonate contents. Experiments of adsorption and drag of conidia by soil particles suspended in CaCl2 solutions of different ionic strength showed B. bassiana conidia to be retained by clay particles, and this effect disappeared with increasing ionic strength. The availability of M. anisopliae conidia in the suspension tended to be lower for sandy than for clayey soils and was not influenced by ionic strength. Regardless of soil properties, over 90% of the added fungal propagules were recovered from the surface layer of columns of packed soils representing model combinations of texture (sandy or clayey) and pH values (acid or alkaline). However, retention of B. bassiana conidia in the surface layer was higher in clayey than in sandy soils, and the retention of M. anisopliae conidia in the surface layer was higher in sandy than in clayey soils. Finally, neither soil texture nor ionic strength affected the infectivity of conidia of both fungal strains to C. capitata puparia. 相似文献
14.
Diachasmimorpha longicaudata(Ashmead) andPsyttalia fletcheri(Silvestri) are opiine parasitoids introduced into Hawaii for control of the Oriental fruit fly,Bactrocera dorsalis(Hendel) and the melon fly,Bactrocera cucurbitae(Coquillett), respectively. Both species have recently been mass-reared and released for research in augmentative biocontrol programs. Laboratory and field sleeve cage experiments were conducted to investigate the potential impact of mass-producedD. longicaudataandP. fletcherion a native Hawaiian tephritid,Trupanea dubautiae(Bryan), infesting the flowerheads of the native composite shrubDubautia raillardioidesHillebrand. Gravid females ofD. longicaudataandP. fletcheriwere confined with bloomingD. raillardioidesflowerheads infested with late instarT. dubautiae.BothD. longicaudataandP. fletcherilacked positive oviposition responses toT. dubautiaelarvae in infested flowerheads and caused neither parasitism nor mortality to the flies. However, when larvae were removed from the flowerheads and presented in screened dishes containing artificial diet of the parasitoids' normal rearing hosts (B. dorsalisandB. cucurbitae), bothD. longicaudataandP. fletcherireadily oviposited in the test larvae. Oviposition byD. longicaudatadid not significantly affect the percentage pupation ofT. dubautiae,but did reduce the emergence of adult flies. Oviposition byP. fletcherisignificantly reduced both pupation and adult fly emergence. All progeny of both parasitoid species died as eggs or first-instar larvae. Results from our experiments demonstrate that biological control programs targeted against frugivorous tephritid pests byD. longicaudataandP. fletcherihave no harmful impact on flowerhead-infestingT. dubautiae. 相似文献
15.
Pablo Montoya Pablo Liedo Betty Benrey Jorge Cancino Juan F. Barrera John Sivinski Martin Aluja 《Biological Control》2000,18(3):216
Diachasmimorpha longicaudata (Ashmead) parasitoids were released by air on a weekly basis over 1600 ha of commercial mango orchards, backyard orchards, and patches of native vegetation, at a density of ca. 940 parasitoids/ha. Releases were made during 2 consecutive years, beginning at flower onset and lasting until the end of the production cycle. Two areas, 7 km apart, were compared. In one area parasitoids were released, whereas the other area was used as a control. During the 2nd year treatments were reversed. Fruit was sampled in commercial mango orchards and in backyard orchards to assess levels of parasitism in fruit fly larvae. Highly significant differences in percentage parasitism were found in release and control zones in backyard orchards. Furthermore, trapping results indicated that D. longicaudata releases were associated with ca. 2.7-fold suppression of Anastrepha spp. populations in backyard orchards. Results suggest that suppression might be affected by environmental conditions and by the parasitoid:fly ratio achieved. Anastrepha obliqua McQuart populations were suppressed more effectively by use of parasitoids than those of Anastrepha ludens Loew, perhaps due to the type of host fruits used by each species. Augmentative parasitoid releases in marginal areas surrounding commercial orchards (backyard orchards, wild vegetation) can substantially suppress fly populations. Through this approach, the number of flies that later move into commercial orchards can be significantly reduced. Such a strategy, when combined with sound orchard management schemes, can allow growers to produce clean fruit without the need to resort to the widespread use of insecticides. 相似文献
16.
R.T. Ichiki M. Murata S. Takano T.T. Oo H.T. Nguyen W. Suasa-ard 《Biocontrol Science and Technology》2011,21(12):1423-1435
The coconut hispine beetle, Brontispa longissima (Gestro), is a serious invasive pest that infests young unopened fronds of coconut palms (Cocos nucifera L.) in Southeast Asia. We previously developed the first artificial diet for rearing B. longissima larvae, which contained a leaf powder of young coconut fronds. Because the fronds are required for healthy growth of coconut palms, it is necessary to reduce their use for rearing the beetles. In this study, we tested two new artificial diets for the beetle larvae, which contained the leaf powders of mature coconut leaves or orchard grass (Dactylis glomerata L.). Brontispa longissima successfully developed from hatching to adulthood on both the mature coconut leaf diet and orchard grass diet. The beetles reared on the mature coconut leaf diet and orchard grass diet developed faster than those reared on the young coconut leaf diet. Fecundity and egg hatchability of beetles did not differ among the three diet treatments. We then examined the suitability of beetle larvae or pupae reared on each diet as hosts for two specialist endoparasitoids, Asecodes hispinarum Boucek and Tetrastichus brontispae Ferriere. The survival rate from oviposition to adult emergence for A. hispinarum was 43.8% in hosts reared on a young coconut leaf diet, 77.1% on a mature coconut leaf diet, and 85.7% on an orchard grass diet. For T. brontispae, the survival rate was 70.0% in hosts reared on the young coconut leaf diet, 38.1% on the mature coconut leaf diet, and 66.7% on the orchard grass diet. Our results indicate these artificial diets can be useful for rearing B. longissima and its two parasitoids, helping to reduce the costs of mass rearing these insects. 相似文献
17.
The virulence of various entomopathogenic nematode (EPN) strains was evaluated against the Mediterranean fruit fly, C. capitata . The selected nematodes were assessed for their infectivity for the final larval stage of the insect host and under varying environmental conditions. Among 12 EPN strains tested, Steinernema riobrave Texas ( Sr TX) and Heterorhabditis sp. IS-5 (H IS-5), showed high activity and induced >80% mortality. Six EPN strains showed limited activity (>30% mortality), and four strains had no effect (<20% mortality). Sr TX was more effective than H IS-5. Mature C. capitata larvae were most susceptible to nematode infection during the first 4h after they began to emerge from their diet to pupate. Activity of the two nematode strains at a constant inoculation rate was dependent on insect larval density. The highest activity was recorded at 1.88 larvae cm -2 and decreased at higher larval densities. EPN activity was also directly related to nematode density. Maximal activity was shown at a density of 150 infective juveniles cm -2 . A similar activity pattern was also recorded with Sr TX in four different soil types. The persistence of this EPN in the soil extended over 5 days but there was no activity after 14 days. Except for a lower activity under cool conditions (17°C), temperatures ranging between 22 and 41°C, or moisture levels in the treated soil ranging between 3 and 20%, had no significant effect on nematode activity. Our results suggest that application of Sr TX against C. capitata may have potential for controlling C. capitata . 相似文献
18.
Anthony R. Clarke Colin Harris Bianca J. Kay Bishwo P. Mainali Lucy K. McLay Francesca Strutt J. Paul Cunningham 《The Annals of applied biology》2022,180(1):44-72
Opiine braconids are parasitoids of the immature stages of frugivorous tephritids. The female wasp lays her eggs into the eggs or larvae of the fruit fly host, where the immature wasp develops before emerging as a next-generation adult from the now dead host pupal case. In support of a new generation of Australian fruit fly parasitoid research, this paper comprehensively reviews what is known about the Australian fruit fly infesting opiines. Based on the most recent taxonomic revision 11 fruit fly infesting opiine species are documented to occur in Australia, but we consider as doubtful the record for Diachasmimorpha longicaudata and consider the record for Fopius illusorius to be tentative without further collections. We identify that the systematics and taxonomy of the Australian native fruit fly infesting opiines are in urgent need of further work. The history of fruit fly biological control in Australia is comprehensively reviewed, including the export of native Australian opiines for fruit fly control elsewhere in the world. Australia was actively involved in three major classical biological control programmes against fruit flies from the turn of the 1900s until the mid-1960s. Despite the introduction of 11 opiine species, plus numerous other natural enemies, only Fopius arisanus established in eastern Australia, where in South-east Queensland it can now cause between 30 and 40% mean parasitism. In addition to the exotic F. arisanus, the native species Diachasmimorpha kraussii and Diachasmimorpha tryoni also cause fruit fly parasitism in agriculturally important crops: both species have also been liberated widely outside of Australia for fruit fly control. Other Australian opiines have not been reared from flies infesting commercial crops and appear biologically restricted to the fruits and environs of Australian east-coast rainforests. The biology literature for D. tryoni and D. kraussii is comprehensively reviewed, while for F. arisanus, already reviewed elsewhere, key literature only is covered. Forward looking, we consider the potential for inoculative or inundative releases of opiines in areas where they do not currently occur to be good, while conservation biological control may help to increase the impacts of parasitoids in areas where they are already established. 相似文献
19.
Mark Salvato Glenn Hart Tim Holler Timothy Roland 《Biocontrol Science and Technology》2003,13(1):111-117
A trial was conducted in Tampa, Florida to test an automated ground release machine as an alternative to aerial methods for release of sterile Mediterranean fruit flies, Ceratitis capitata (Wiedemann). Twenty-four Jackson traps baited with trimedlure at three release sites yielded lower than expected numbers of ground released Medflies. Recaptures per trap ranged from 2.8 (±0.7 S.E.) to 6.8 (±1.7 S.E.). Average recovery of sterile flies at each site for all releases combined (144 observations) was similar, 3.4 (±0.5 S.E.), 4.4 (±0.5 S.E.), 4.5 (±0.5 S.E.) for sites 1, 2 and 3 respectively. There was a significant reduction in flight ability from 67.5 (±2.1 S.E.) to 53.6 (±2.9 S.E.)%, from the time of pre-chilling to when immobilized flies were released after 2.5 h in the release container. Further tests are needed to determine what mortality factors may influence recovery and how the automated ground release machine compares to the aerial release method. 相似文献
20.
Gustavo Baeza Larios John Sivinski Tim Holler Martin Aluja 《Biocontrol Science and Technology》2002,12(2):205-215
Suppression of Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), populations may be achieved through the mass-rearing and augmentative aerial release of opiine braconid parasitoids. Typically, aerial release techniques require up to one hour of chilling of adult parasitoids at temperatures as low as 3.5°C prior to their dissemination. Such chilling potentially could affect the subsequent performance of the insects. Among three species of the genus Diachasmimorpha longicaudata (Ashmead), tryoni (Cameron), and krausii (Fullaway) there was little or no affect of chilling in the laboratory on female longevity, production of daughters, or offspring sex ratio. This is consistent with previous experiments that found chilling to have no discernable effect on the short-term mortality of D. tryoni or on its ability to take flight immediately after aerial release. While there was little effect of chilling on longevity and fecundity in a species from another opiine genus, Fopius arisanus (Sonan), exposure to low temperatures did result in a significantly more male-biased offspring sex ratio. 相似文献