首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species are important mediators of cellular damage during endotoxic shock. In order to investigate the hepatic response to the oxidative stress induced by endotoxin, hepatic and plasma glutathione (total, GSH and GSSG), GSSG/GSH ratio as well as Mn-superoxide dismutase and catalase activities were determined during the acute and recovery phases of reversible endotoxic shock in the rat. A significant increase in liver and plasma total glutathione content was observed 5 h after endotoxin treatment (acute phase), followed by a diminution of these parameters below control values at 48 h (recovery phase). The significant increases of GSSG levels and GSSG/GSH ratio are indicative of oxidative stress occurring during the acute phase. Liver Mn-SOD activity showed a similar time dependency as the GSSG/GSH ratio; however, a marked decrease in the liver catalase activity was observed during the process. These results indicate the participation of liver glutathione in the response to endotoxin and the possible use of plasma glutathione levels and GSSG/GSH ratio as indicators of the acute phase during the endotoxic process. (Mol Cell Biochem 159: 115-121, 1996)  相似文献   

2.
The aim of this study was to determine seizure-induced oxidative stress by measuring hippocampal glutathione (GSH) and glutathione disulfide (GSSG) levels in tissue and mitochondria. Kainate-induced status epilepticus (SE) in rats resulted in a time-dependent decrease of GSH/GSSG ratios in both hippocampal tissue and mitochondria. However, changes in GSH/GSSG ratios were more dramatic in the mitochondrial fractions compared to hippocampal tissue. This was accompanied by a mild increase in glutathione peroxidase activity and a decrease in glutathione reductase activity in hippocampal tissue and mitochondria, respectively. Since coenzyme A (CoASH) and its disulfide with GSH (CoASSG) are primarily compartmentalized within mitochondria, their measurement in tissue was undertaken to overcome problems associated with GSH/GSSG measurement following subcellular fractionation. Hippocampal tissue CoASH/CoASSG ratios were decreased following kainate-induced SE, the time course and magnitude of change paralleling mitochondrial GSH/GSSG levels. Cysteine, a rate-limiting precursor of glutathione was decreased following kainate administration in both hippocampal tissue and mitochondrial fractions. Together these changes in altered redox status provide further evidence for seizure-induced mitochondrial oxidative stress.  相似文献   

3.
Effects of pre-treatment with the alcoholic extract of I. tinctoria (500 mg/kg body wt/day, p.o. for 21 days) on liver antioxidant defense system during acute hepatitis induced by D-galactosamine (D-GalN)/endotoxin (LPS extracted by phenol water method from E. coli serotype 0111.B4; 300 mg and 30 micrograms/kg body wt/day, i.p., 18 hr before the assay) were investigated on the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and glutathione-s-transferase, and levels of total reduced glutathione in the liver of normal and experimental groups of male albino rats. Since lipid peroxidation and associated membrane damage is a key feature of D-galN/LPS-induced liver injury, the levels of lipid peroxides, was estimated and used as an index of oxidative stress. D-GalN/endotoxin-induced hepatic damage was manifested by a significant decrease in the activities of antioxidant enzymes, decreased glutathione levels and increased levels of lipid peroxides. I. tinctoria pre-treated rats showed considerable protection against D-galN/endotoxin, induced oxidative stress as evidenced by a significant increase in the activities of all the antioxidant enzymes studied and significant decrease in the levels of lipid peroxides. Results indicate that pretreatment with I. tinctoria extract in rats is very effective in reducing D-GalN/endotoxin-induced oxidative stress suggesting an antioxidant effect.  相似文献   

4.
Hyperoxic adult rats have prolonged survival and reduced morphological evidence of lung injury when treated with a single dose of bacterial endotoxin; this effect is mediated by an augmentation of antioxidant enzyme activity in lung homogenate. To determine whether endotoxin would prolong survival and influence antioxidant enzyme levels in lambs whose physiological response to O2 breathing can be serially measured, we administered a single intravenous dose of endotoxin (0.75 microgram/kg body wt) to 13 lambs before exposing them to greater than 95% O2 (n = 11) or air (n = 2). Seven additional lambs were placed in O2 after receiving only saline vehicle. All lambs had been instrumented to measure pulmonary vascular pressures and cardiac output, and 10 lambs had lung lymph fistulas. O2-exposed control lambs developed noncardiogenic pulmonary edema and respiratory failure within 85 +/- 10 h (range 76-110 h); antioxidant enzymes were not increased, but reduced glutathione (GSH) levels fell and oxidized glutathione (GSSG) increased, reflecting the oxidant stress of O2 exposure. By contrast, endotoxin-treated O2-exposed lambs had a delayed increase in microvascular permeability to protein, a reduced rate of lung edema formation, normal gas exchange after 72 h in O2, and prolonged survival (136 +/- 15 h; range 90-160 h; all variables P less than 0.05). Despite prolonged survival, postmortem lung water content was no greater in the lambs that received endotoxin. Treatment with endotoxin did not increase antioxidant enzyme levels in lung homogenate, but levels of GSH relative to GSSG were significantly elevated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

6.
We have previously reported that endotoxin induces in vivo oxidative stress in liver and a significant increase in hepatic and plasma glutathione concentrations during the acute phase of reversible endotoxic shock in rats. In the present study we examined the in vitro effects of E. coli 0111:B4 endotoxin (lipopolysaccharide, LPS), IL-1 and TNF- on antioxidant status of cultured hepatocytes in order to differentiate between the direct and mediated endotoxin action. LPS increased total glutathione (tGSH) levels after 2 h treatment but decreased oxidized glutathione (GSSG) content which lead to a marked decrease in GSSG/tGSH index. At shorter treatment times a biphasic and dose-dependent behaviour was observed. Cytokines (IL-1 and TNF-) produced significant decreases in tGSH and GSSG after 30 min treatment. Despite its prooxidant effect, TNF- significantly reduced GSSG/tGSH index. Although no significant effects were observed on glutathione reductase activity, both LPS and cytokines induced an important inhibition of glutathione peroxidase which can justify the lipid peroxidation previously observed both in liver during reversible endotoxic shock and in cultured hepatocytes after treatment with endotoxin. The inhibition of hepatic glutathione peroxidase, besides the stimulation of GSH synthesis by LPS and GSH efflux by cytokines, guarantees the export of hepatic glutathione in its reduced form for other organs, contributing to the interorgan homeostasis. On the other hand, the results presented here support a new role for GSSG/tGSH index different from a mere indicator of oxidative stress.  相似文献   

7.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

8.
Human immunodeficiency virus (HIV)-1 causes lung disease by increasing the host's susceptibility to pathogens. HIV-1 also causes an increase in systemic oxidative/nitrosative stress, perhaps enhancing the deleterious effects of secondary infections. Here we examined the ability of HIV-1 proteins to increase lung oxidative/nitrosative stress after lipopolysaccharide (LPS) (endotoxin) administration in an HIV-1 transgenic mouse model. Lung oxidative/nitrosative stress biomarkers studied 3 and 6 h after LPS administration were as follows: lung edema, tissue superoxide, NO metabolites, nitrotyrosine, hydrogen peroxide, and bronchoalveolar lavage fluid (BALF) glutathione (GSH). Blood serum cytokine levels were quantified to verify immune function of our nonimmunocompromised animal model. Results indicate that 3 h after LPS administration, HIV-1 transgenic mouse lung tissue has significantly greater edema and superoxide. Furthermore, NO metabolites are significantly elevated in HIV-1 transgenic mouse BALF, lung tissue, and blood plasma compared with those of wild-type mice. HIV-1 transgenic mice also produce significantly greater lung nitrotyrosine and hydrogen peroxide than wild-type mice. In addition, HIV-1 transgenic mice produce significantly less BALF GSH than wild-type mice 3 h after LPS treatment. Without treatment, serum cytokine levels are similar for HIV-1 transgenic and wild-type mice. After treatment, serum cytokine levels are significantly elevated in both HIV-1 transgenic and wild-type mice. Therefore, HIV-1 transgenic mice have significantly greater lung oxidative/nitrosative stress after endotoxin administration than wild-type mice, independent of immune function. These results indicate that HIV-1 proteins may increase pulmonary complications subsequent to a secondary infection by altering the lung redox potential.  相似文献   

9.
We examined the brain oxidative stress which accompanies 30 min of bilateral carotid artery ligation (BCAL) in terms of changes in brain levels of glutathione; reduced (GSH) and oxidized (GSSG) forms and the exacerbation of oxidative stress by disulfiram (DSF). These results indicate that BCAL alone decreases GSH content and limits glutathione reductase (GR) activity, and these changes were enhanced by DSF pretreatment. Similar observations were recorded with DSF alone. GR activity (74.3±4.0 µmol min–1 mg–1 tissue; p<0.001) and GSH content (1.23±0.06 µmol min–1g–1 tissue; p<0.001) was attenuated in rats subjected to synergistic effect of BCAL and DSF with a concomitant increase of GSSG (0.006±0.006 µmol min–1 g–1 tissue; p<0.001). Recovery of GSH/GSSG level and GR activity during reperfusion following 30 min BCAL was considerably delayed (96 h) in the BCAL and DSF group as compared to the recovery time of 24 h in the group subjected to BCAL-reperfusion alone. Perturbation of GSH/GSSG homeostasis as a result of BCAL was augmented by DSF. These findings clearly demonstrate central nervous system oxidative stress due to a BCAL-DSF synergistic effect. Based on the results obtained with this model, we conclude that DSF increases brain oxidative stress and this may be detrimental to alcoholics who might drink and develop an acetaldehyde-induced hypotension while taking DSF.  相似文献   

10.
The objective of this study is to determine if treatment with the angiogenesis inhibitor TNP-470 results in impairment of oxidative stress, inhibition of nuclear factor kappa B (NF-κB) activation and decrease of nitric oxide production in an experimental model of rat hepatocarcinogenesis. Tumour was induced by diethylnitrosamine and promoted by two-thirds hepatectomy plus acetaminofluorene administration. Experiments were carried out at 28 weeks after initiating the treatment. TNP-470 was administered at 30 mg/kg, three times per week from 20 to 28 weeks. Carcinomatous tissue growing outside dysplastic nodules and a marked expression of placental glutathione S-transferase were detected in rats with induced carcinogenesis. Liver concentrations of thiobarbituric acid reactive substances, reduced glutathione (GSH) and glutathione disulfide (GSSG) were significantly higher than those of controls and there was a significant increase in the GSSG/GSH ratio. Tumour growth was accompanied by augmented expression of inducible nitric oxide synthase, activation of (NF-κB) and proteolysis of IkappaB. All these effects were absent in animals receiving TNP-470. Our results indicate that TNP-470 inhibits oxidative stress, nitric oxide production and NF-κB activation induced by experimental hepatocarcinogenesis. These changes would contribute to the beneficial effects of TNP-470 in cancer treatment.  相似文献   

11.
The study of the influence of the age of animals (13 to 53 weeks) on total liver thiobarbituric acid reactive substances (TBAR) content showed an increase which is maximal in rats of 39 weeks of age compared to young animals (13 weeks), followed by a dimunition in the 53 weeks old group. In this situation, the content of hepatic GSH and total GSH equivalents as well as the GSH/GSSG ratio were decreased with ageing, while GSSG levels were enhanced in the oldest group studied. Acute ethanol intoxication resulted in a marked increase in liver TBAR content in young animals, together with a decline in GSH, total GSH equivalents and GSH/GSSG ratio, and an enhancement in GSSG. These changes elicited by ethanol intake were reduced with ageing. It is concluded that ethanol-induced oxidative stress in the liver is diminished during ageing, despite the progressive decrease in the glutathione content of the tissue observed in control animals.  相似文献   

12.
Kumar G  Knowles NR 《Plant physiology》1996,112(3):1301-1313
Glutathione-mediated free-radical-scavenging and plasma membrane ATPase activities increase as sinks for metabolic energy with advancing tuber age. Plasma membrane ATPase activity from 19-month-old tubers was 77% higher than that from 7-month-old tubers throughout sprouting. The higher activity was not attended by an increase in the amount of ATPase per unit plasma membrane protein. Concentrations of oxidized (GSSG) and reduced glutathione more than doubled as tuber age advanced from 6 to 30 months, but the proportion of GSSG to total glutathione remained constant with age. The activity of glutathione transferase, an enzyme that catabolizes lipid-hydroperoxides, increased by 44 and 205% on a fresh weight and protein basis, respectively, as tubers aged from 6 to 30 months. Glutathione reductase activity also increased with advancing age, by 90% on a fresh weight basis and 305% on a protein basis. Older tubers had more glutathione reductase per unit of soluble and mitochondrial protein. The age-induced increase in cytosolic glutathione transferase activity was likely due to increased availability of lipid-hydroperoxides and/or a positive effector. Synthesis of glutathione requires ATP, and the increased reduction of GSSG resulting from catalysis of lipid-hydroperoxides is NADPH-dependent. Thus, increased plasma membrane ATPase and glutathione-mediated free-radical-scavenging activities likely constitute substantial sinks for ATP in older tubers prior to and during sprouting. Increased oxidative stress and loss in membrane integrity and central features of aging that undoubtedly contribute to the enhanced respiration of sprouting older tubers.  相似文献   

13.
Wilson's disease (WD) is an inherited disorder, characterized by selective copper deposition in liver and brain, chronic hepatitis and extra-pyramidal signs. In this study, we investigated changes of biochemical markers of oxidative stress and apoptosis in liver, striatum and cerebral cortex homogenates from Long-Evans Cinnamon (LEC) rats, a mutant strain isolated from Long Evans (LE) rats, in whom spontaneous hepatitis develops shortly after birth. LEC and control (LE) rats at 11 and 14 weeks of age were used. We determined tissue levels of glutathione (GSH/GSSG ratio), lipid peroxides, protein-thiols (P-SH), nitric oxide metabolites, activities of caspase-3 and total superoxide-dismutase (SOD), striatal levels of monoamines and serum levels of hepatic amino-transferases. We observed a decrease of protein-thiols, GSH/GSSG ratio and nitrogen species associated to increased lipid peroxidation in the liver and striatum - but not in the cerebral cortex - of LEC rats, accompanied by dramatic increase in serum amino-transferases and decrease of striatal catecholamines. Conversely, SOD and caspase-3 activity increased consistently only in the cortex of LEC rats. Hence, we assume that enhanced oxidative stress may play a central role in the cell degeneration in WD, at the main sites of copper deposition, with discrete pro-apoptotic conditions developing in distal areas.  相似文献   

14.
Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on expression/activity of the main DDS phase-II-metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxidation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.  相似文献   

15.
Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid   总被引:10,自引:0,他引:10  
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy. The attempts to identify early markers of diabetes-induced renal oxidative injury resulted in contradictory findings. We characterized early oxidative stress in renal cortex of diabetic rats, and evaluated whether it can be prevented by the potent antioxidant, DL-alpha-lipoic acid. The experiments were performed on control rats and streptozotocin-diabetic rats treated with/without DL-alpha-lipoic acid (100 mg/kg i.p., for 3 weeks from induction of diabetes). Malondialdehyde plus 4-hydroxyalkenal concentration was increased in diabetic rats vs. controls (p <.01) and this increase was partially prevented by DL-alpha-lipoic acid. F(2) isoprostane concentrations (measured by GCMS) expressed per either mg protein or arachidonic acid content were not different in control and diabetic rats but were decreased several-fold with DL-alpha-lipoic acid treatment. Both GSH and ascorbate (AA) levels were decreased and GSSG/GSH and dehydroascorbate/AA ratios increased in diabetic rats vs. controls (p <.01 for all comparisons), and these changes were completely or partially (AA) prevented by DL-alpha-lipoic acid. Superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, and NADH oxidase, but not catalase, were upregulated in diabetic rats vs. controls, and these activities, except glutathione peroxidase, were decreased by DL-alpha-lipoic acid. In conclusion, enhanced oxidative stress is present in rat renal cortex in early diabetes, and is prevented by DL-alpha-lipoic acid.  相似文献   

16.
The objective of this study is to determine if treatment with the angiogenesis inhibitor TNP-470 results in impairment of oxidative stress, inhibition of nuclear factor kappa B (NF-κB) activation and decrease of nitric oxide production in an experimental model of rat hepatocarcinogenesis. Tumour was induced by diethylnitrosamine and promoted by two-thirds hepatectomy plus acetaminofluorene administration. Experiments were carried out at 28 weeks after initiating the treatment. TNP-470 was administered at 30 mg/kg, three times per week from 20 to 28 weeks. Carcinomatous tissue growing outside dysplastic nodules and a marked expression of placental glutathione S-transferase were detected in rats with induced carcinogenesis. Liver concentrations of thiobarbituric acid reactive substances, reduced glutathione (GSH) and glutathione disulfide (GSSG) were significantly higher than those of controls and there was a significant increase in the GSSG/GSH ratio. Tumour growth was accompanied by augmented expression of inducible nitric oxide synthase, activation of (NF-κB) and proteolysis of IkappaB. All these effects were absent in animals receiving TNP-470. Our results indicate that TNP-470 inhibits oxidative stress, nitric oxide production and NF-κB activation induced by experimental hepatocarcinogenesis. These changes would contribute to the beneficial effects of TNP-470 in cancer treatment.  相似文献   

17.
Adaptation to various forms of stress has been found to be associated with increased cellular tolerance to myocardial ischemia. In this study, the effects of myocardial adaptation to oxidative stress was examined by injecting rats with endotoxin (0.5 mg/kg) and its non-toxic derivative, lipid A (0.5 mg/kg). Both compounds exerted oxidative stress within 1 h of treatment as evidenced by enhanced malonaldehyde formation. The oxidative stress disappeared steadily and progressively with time in concert with the appearance of the induction of glutathione and antioxidative enzymes that included superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. After 24 h of endotoxin or lipid A treatment, the amount of oxidative stress and antioxidant enzyme levels were significantly lower and higher, respectively, compared to those at the baseline levels. Corroborating these results, both endotoxin and lipid A provided protection against myocardial ischemia and reperfusion injury as evidenced by significantly improved postischemic recovery of left ventricular functions. The data presented here demonstrates that a controlled amount of oxidative stress induces the expression of intracellular antioxidants that can result in enhanced myocardial tolerance to ischemia. This suggests that myocardial adaptation to oxidative stress may be a potential tool for reduction of ischemic/reperfusion injury.  相似文献   

18.
In a previous study oxidative damage markers - lipid peroxidation and protein oxidation - were determined in organs of wild Caiman yacare captured in winter-2001 and summer-2002 at various developmental stages. An increase in oxidative damage occurred in the hatchling-juvenile transition (but not in the juvenile-adult transition) and winter-summer transition (in juveniles), suggesting that oxidative stress is associated with development and season. Herein the effect of development and season on glutathione (GSH) metabolism and the effect of development on the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase and glutathione S-transferase) and glucose 6-phosphate dehydrogenase were analyzed. The ratio GSSG:GSH-eq increased in lung, liver, kidney and brain by 1.8- to 4-fold in the embryo/hatchling to juvenile transition. No changes occurred in juvenile-adult transition. GSSG:GSH-eq across seasons was significantly elevated in summer. Total-glutathione content was mostly stable in various organs; in liver it increased in the embryo-juvenile transition. Enzyme activities were only determined in summer-animals (embryos, hatchlings and juveniles). For most antioxidant enzymes, activities increased from embryo/hatchling to juvenile in liver and Kidney. In lung, there was an inverse trend for enzyme activities and total glutathione content. Thus, increased metabolic rates during early caiman growth - in embryo-juvenile transition - appears to be related to redox imbalance as suggested by increased GSSG:GSH-eq and activation of antioxidant defenses. Differences in oxidative stress across seasons were related with summer-winter nocturnal temperatures. These results, as a whole, were interpreted in the context of ecological biochemistry.  相似文献   

19.
Rhabdomyolysis-induced oxidative stress is associated with morphological and functional damage to the kidney and other organs, but applications of this model in the lung are still lacking. The aim of the present study was to determine the relationship between oxidative stress and the morphological changes occurring in the lungs of rats subjected to rhabdomyolysis. Rhabdomyolysis was induced by intramuscular glycerol injection (50% v/v, 10 ml/kg), and the control group was injected with saline vehicle. Arterial blood samples were drawn at 0, 2, 4, and 6 hrs for measurement of arterial gases, creatine kinase activity, and plasma free F2-isoprostane levels. Six hours later, the lungs were removed to determine the wet-to-dry weight ratio, reduced glutathione (GSH) and GSH disulfide (GSSG) levels, and activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD], and GSH peroxidase [GSH-Px]). Protein carbonylation and lipid peroxidation were assessed in the lungs by measurement of carbonyl and malondialdehyde (MDA) production, respectively. Bronchoalveolar lavage, cell counts, and lung ultrastructural studies were also performed. Six hours after glycerol injection, arterial PO2 and PCO2 were 23% and 38% lower, respectively, and plasma free F2-isoprostane levels were 72% higher, compared with control values. In lungs, protein carbonyl and MDA production were 58% and 12% higher, respectively; the GSH:GSSG ratio and GSH-Px activity were 43% and 60% lower, respectively; and activities of CAT and SOD showed no significant differences compared with controls. Rhabdomyolysis-induced ultrastructural impairment of the lung showed Type II cell damage, extracytoplasmic lamellar bodies and lack of tubular myelin reorganization, endothelial cellular edema, and no disruption of the alveolar-capillary barrier. These results provide evidence that rhabdomyolysis could induce tissue injury associated with increased oxidative stress, suggesting the contribution of oxidative stress to the pathogenic mechanism of acute lung injury.  相似文献   

20.
This review describes the role of oxidative stress caused by endotoxin challenge in sepsis or septic shock symptoms. We observed that endotoxin injection resulted in lipid peroxide formation and membrane damage (near 60-150 kDa) in the livers of experimental animals, causing decreased levels of scavengers or quenchers of free radicals. The administration of alpha-tocopherol completely prevented injury to the liver plasma membrane caused by endotoxin, and suggested that lipid peroxidation by free radicals might occur in a tissue ischemic state, probably by disseminated intravascular coagulation (DIC), in endotoxemia. In mice, depression of Ca(2+)-ATPase activity in the liver plasma membrane may contribute to the membrane damage caused by endotoxin, and the increase of [Ca(2+)](i) in the liver cytoplasm may partially explain the oxidative stress that occurs in endotoxemia. It seems that endotoxin-induced free radical formation is regulated by Ca(2+) mobilization. Moreover, we have suggested that the oxidative stress caused by endotoxin may be due, at least in part, to the changes in endogenous zinc or selenium regulation during endotoxemia. Interestingly, the extent of TNF-alpha-induced oxidative stress may be the result of a synergism between TNF-alpha and gut-derived endotoxin. It is likely that bacterial or endotoxin translocation plays a significant role in TNF-alpha-induced septic shock. On the other hand, although nitric oxide (NO) has been implicated in the pathogenesis of vascular hyporesponsiveness and hypotension in septic shock in our experimental model, it is unlikely that NO plays a significant role in liver injury caused by free radical generation in endotoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号