首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of periodic obstructive apneas onsystemic and myocardial hemodynamics were studied in ninepreinstrumented sedated pigs under four conditions: breathing room air(RA), breathing 100% O2,breathing RA after critical coronary stenosis (CS) of the left anteriordescending coronary artery, and breathing RA after autonomic blockadewith hexamethonium (Hex). Apneas with RA increased mean arterialpressure (MAP; from baseline 103.0 ± 3.5 to late apnea 123.6 ± 7.0 Torr, P < 0.001) and coronary blood flow (CBF; late apnea 193.9 ± 22.9% of baseline,P < 0.001) but decreased cardiacoutput (CO; from baseline 2.97 ± 0.15 to late apnea 2.39 ± 0.19 l/min, P < 0.001). Apneas withO2 increased MAP (from baseline105.1 ± 4.6 to late apnea 110.7 ± 4.8 Torr, P < 0.001). Apneas with CS producedsimilar increases in MAP as apneas with RA but greater decreases in CO(from baseline 3.03 ± 0.19 to late apnea 2.1 ± 0.15 l/min,P < 0.001). In LAD-perfused myocardium, there was decreased segmental shortening (baseline 11.0 ± 1.5 to late apnea 7.6 ± 2.0%,P < 0.01) and regionalintramyocardial pH (baseline 7.05 ± 0.03 to late apnea 6.72 ± 0.11, P < 0.001) during apneas withCS but under no other conditions. Apneas with Hex increased to the sameextent as apneas with RA. Myocardial O2 demand remained unchangedduring apnea relative to baseline. We conclude that obstructiveapnea-induced changes in left ventricular afterload and CO aresecondary to autonomic-mediated responses to hypoxemia. Increased CBFduring apneas is related to regional metabolic effects of hypoxia andnot to autonomic factors. In the presence of limited coronary flowreserve, decreased O2 supply during apneas can lead to myocardial ischemia, which in turnadversely affects left ventricular function.

  相似文献   

2.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

3.
Kocis, Keith C., Peter J. Radell, Wayne I. Sternberger, JaneE. Benson, Richard J. Traystman, and David G. Nichols. Ultrasound evaluation of piglet diaphragm function before and after fatigue. J. Appl. Physiol. 83(5):1654-1659, 1997.Clinically, a noninvasive measure of diaphragmfunction is needed. The purpose of this study is to determine whetherultrasonography can be used to 1)quantify diaphragm function and 2)identify fatigue in a piglet model. Five piglets were anesthetized withpentobarbital sodium and halothane and studied during the followingconditions: 1) baseline (spontaneous breathing); 2) baseline + CO2 [inhaledCO2 to increase arterial PCO2 to 50-60 Torr (6.6-8kPa)]; 3) fatigue + CO2 (fatigue induced with 30 minof phrenic nerve pacing); and 4)recovery + CO2 (recovery after 1 hof mechanical ventilation). Ultrasound measurements of the posteriordiaphragm were made (inspiratory mean velocity) in the transverseplane. Images were obtained from the midline, just inferior to thexiphoid process, and perpendicular to the abdomen. M-mode measures weremade of the right posterior hemidiaphragm in the plane just lateral tothe inferior vena cava. Abdominal and esophageal pressures weremeasured and transdiaphragmatic pressure (Pdi) was calculated duringspontaneous (Sp) and paced (Pace) breaths. Arterial blood gases werealso measured. Pdi(Sp) and Pdi(Pace)during baseline + CO2 were 8 ± 0.7 and 49 ± 11 cmH2O, respectively, anddecreased to 6 ± 1.0 and 27 ± 7 cmH2O,respectively, during fatigue + CO2. Mean inspiratory velocityalso decreased from 13 ± 2 to 8 ± 1 cm/s during theseconditions. All variables returned to baseline during recovery + CO2. Ultrasonography can beused to quantify diaphragm function and identify piglet diaphragm fatigue.

  相似文献   

4.
McNamara, Frances, Faiq G. Issa, and Colin E. Sullivan.Arousal pattern following central and obstructive breathing abnormalities in infants and children. J. Appl.Physiol. 81(6): 2651-2657, 1996.We analyzed thepolysomnographic records of 15 children and 20 infants with obstructivesleep apnea (OSA) to examine the interaction between central andobstructive breathing abnormalities and arousal from sleep. Eachpatient was matched for age with an infant or child who had no OSA. Wefound that the majority of respiratory events in infants and childrenwas not terminated with arousal. In children, arousals terminated 39.3 ± 7.2% of respiratory events during quiet sleep and 37.8 ± 7.2% of events during active (rapid-eye-movement) sleep. In infants,arousals terminated 7.9 ± 1.0% of events during quiet sleep and7.9 ± 1.2% of events during active sleep. In both infants andchildren, however, respiratory-related arousals occurred more frequently after obstructive apneas and hypopneas than after central events. Spontaneous arousals occurred in all patients with OSA duringquiet and active sleep. The frequency of spontaneous arousals was notdifferent between children with OSA and their matched controls. Duringactive sleep, however, infants with OSA had significantly fewerspontaneous arousals than did control infants. We conclude that arousalis not an important mechanism in the termination of respiratory eventsin infants and children and that electroencephalographic criteria arenot essential to determine the clinical severity of OSA in thepediatric population.

  相似文献   

5.
Cerebral vasomotor reactivity at high altitude in humans   总被引:3,自引:0,他引:3  
The purpose of this study was twofold:1) to determine whether at highaltitude cerebral blood flow (CBF) as assessed during CO2 inhalation and duringhyperventilation in subjects with acute mountain sickness (AMS) wasdifferent from that in subjects without AMS and2) to compare the CBF as assessedunder similar conditions in Sherpas at high altitude and in subjects atsea level. Resting control values of blood flow velocity in themiddle cerebral artery (VMCA), pulseoxygen saturation (SaO2), andtranscutaneous PCO2 were measured at4,243 m in 43 subjects without AMS, 17 subjects with AMS, 20 Sherpas,and 13 subjects at sea level. Responses ofCO2 inhalation andhyperventilation onVMCA,SaO2, and transcutaneous PCO2 were measured, and the cerebralvasomotor reactivity (VMR = VMCA/PCO2)was calculated as the fractional change ofVMCA per Torrchange of PCO2, yielding ahypercapnic VMR and a hypocapnic VMR. AMS subjects showeda significantly higher resting controlVMCA than didno-AMS subjects (74 ± 22 and 56 ± 14 cm/s, respectively;P < 0.001), andSaO2 was significantly lower (80 ± 8 and 88 ± 3%, respectively; P < 0.001). Resting control VMCA values inthe sea-level group (60 ± 15 cm/s), in the no-AMS group, and inSherpas (59 ± 13 cm/s) were not different. Hypercapnic VMR valuesin AMS subjects were 4.0 ± 4.4, in no-AMS subjects were 5.5 ± 4.3, in Sherpas were 5.6 ± 4.1, and in sea-level subjects were 5.6 ± 2.5 (not significant). Hypocapnic VMR values were significantly higher in AMS subjects (5.9 ± 1.5) compared with no-AMS subjects (4.8 ± 1.4; P < 0.005) but werenot significantly different between Sherpas (3.8 ± 1.1) and thesea-level group (2.8 ± 0.7). We conclude that AMS subjects havegreater cerebral hemodynamic responses to hyperventilation, higherVMCAresting control values, and lower SaO2 compared with no-AMSsubjects. Sherpas showed a cerebral hemodynamic patternsimilar to that of normal subjects at sea level.  相似文献   

6.
Gastric tonometerPCO2 measurement may help identifygut ischemia in critically ill patients but is frequentlyassociated with large measurement errors. We tested the hypothesis thatsmall bowel tonometer PCO2measurement yields more accurate information. In 10 anesthetized,mechanically ventilated pigs subject to progressive hemorrhage, wemeasured gut oxygen delivery and consumption. We also measuredtonometer PCO2 minus arterialPCO2(PCO2) and calculated the corresponding intracellular pH from tonometers placed in the stomach and jejunum. We found that the correlation coefficient(r2) forbiphasic gut oxygen delivery-PCO2relationships was 0.29 ± 0.52 for the gastric tonometer vs. 0.76 ± 0.25 for the small bowel tonometer(P < 0.05). In addition, thecritical gastric tonometer PCO2was excessively high and variable (62.9 ± 39.6) compared with thecritical small bowel tonometerPCO2 (17.0 ± 15.0, P < 0.01). Small bowel tonometerPCO2 was closely correlated withsuperior mesenteric vein PCO2(r2 = 0.81, P < 0.001), whereas gastrictonometer PCO2 was not(r2 = 0.13, P = not significant). Weconclude that measurement of gastric tonometerPCO2 yields excessively noisy andinaccurate data on the onset of gut anaerobic metabolism in hemorrhagicshock. Small bowel tonometer PCO2 isless noisy and, as a result, is superior in detecting gut hypoperfusionand the onset of anaerobic metabolism.

  相似文献   

7.
Important role of carotid afferents in control of breathing   总被引:5,自引:0,他引:5  
The purpose of the present study was todetermine the effect on breathing in the awake state of carotid bodydenervation (CBD) over 1-2 wk after denervation. Studies werecompleted on adult goats repeatedly before and1) for 15 days after bilateral CBD (n = 8),2) for 7 days after unilateral CBD(n = 5), and3) for 15 days after sham CBD(n = 3). Absence of ventilatorystimulation when NaCN was injected directly into a common carotidartery confirmed CBD. There was a significant(P < 0.01) hypoventilation during the breathing of room air after unilateral and bilateral CBD. Themaximum PaCO2 increase (8 Torr forunilateral and 11 Torr for bilateral) occurred ~4 days afterCBD. This maximum was transient because by 7 (unilateral)to 15 (bilateral) days after CBD, PaCO2 was only 3-4 Torr above control.CO2 sensitivity was attenuated from control by 60% on day 4 afterbilateral CBD and by 35% on day 4 after unilateral CBD. This attenuation was transient, because CO2 sensitivity returned tocontrol temporally similar to the return ofPaCO2 during the breathing of room air.During mild and moderate treadmill exercise 1-8 days afterbilateral CBD, PaCO2 was unchanged fromits elevated level at rest, but, 10-15 days after CBD,PaCO2 decreased slightly from restduring exercise. These data indicate that1) carotid afferents are animportant determinant of rest and exercise breathing and ventilatoryCO2 sensitivity, and2) apparent plasticity within theventilatory control system eventually provides compensation for chronicloss of these afferents.

  相似文献   

8.
Forster, H. V., L. G. Pan, T. F. Lowry, T. Feroah, W. M. Gershan, A. A. Whaley, M. M. Forster, and B. Sprtel. Breathing ofawake goats during prolonged dysfunction of caudal M ventrolateral medullary neurons. J. Appl. Physiol.84(1): 129-140, 1998.Cooling the caudal M ventrolateralmedullary (VLM) surface for 30 s results in a sustained apnea inanesthetized goats but only a 30% decrease in breathing in awakegoats. The purpose of the present study was to determine, in the awakestate, the effect of prolonged (minutes, hours) caudal M neuronaldysfunction on eupneic breathing andCO2 sensitivity. Dysfunction wascreated by ejecting excitatory amino acid receptor antagonists or aneurotoxin on the VLM surface through guide tubes chronically implantedbilaterally on a 10- to 12-mm2portion of the caudal M VLM surface of 12 goats. Unilateral and bilateral ejections (1 µl) of selective antagonists forN-methyl-D-aspartic acid ornon-N-methyl-D-asparticacid receptors had no significant effect on eupneic breathing orCO2 sensitivity. Unilateralejection of a nonselective excitatory amino acid receptor antagonistgenerally had no effect on eupneic breathing orCO2 sensitivity. However, bilateral ejection of this antagonist resulted in a significant 2-Torrhypoventilation during eupnea and a significant reduction inCO2 sensitivity to 60 ± 9% ofcontrol. Unilateral ejection of the neurotoxin kainic acid initiallystimulated breathing; however, breathing then returned to near controlwith no incidence of apnea. After the kainic acid ejection,CO2 sensitivity was reducedsignificantly to 60 ± 7% of control. We conclude that in the awakestate a prolonged dysfunction of caudal M VLM neurons results incompensation by other mechanisms (e.g., carotid chemoreceptors, wakefulness) to maintain near-normal eupneic breathing, butcompensation is more limited for maintainingCO2 sensitivity.

  相似文献   

9.
Akilesh, Manjapra R., Matthew Kamper, Aihua Li, and EugeneE. Nattie. Effects of unilateral lesions of retrotrapezoid nucleuson breathing in awake rats. J. Appl.Physiol. 82(2): 469-479, 1997.In anesthetizedrats, unilateral retrotrapezoid nucleus (RTN) lesions markedlydecreased baseline phrenic activity and the response toCO2 (E. E. Nattie and A. Li.Respir. Physiol. 97: 63-77,1994). Here we evaluate the effects of such lesions on restingbreathing and on the response to hypercapnia and hypoxia inunanesthetized awake rats. We made unilateral injections [24 ± 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatoryamino acid neurotoxin, in the RTN region(n = 7) located by stereotaxic coordinates and by field potentials induced by facial nervestimulation. Controls (n = 6) receivedRTN injections (80 ± 30 nl) of mock cerebrospinal fluid. A secondcontrol consisted of four animals with IA injections (24 ± 12 nl)outside the RTN region. Injected fluorescent beads allowed anatomicidentification of lesion location. Using whole body plethysmography, wemeasured ventilation in the awake state during room air, 7%CO2 in air, and 10%O2 breathing before and for 3 wkafter the RTN injections. There was no statistically significant effectof the IA injections on resting room air breathing in the lesion groupcompared with the control groups. We observed no apnea. The response to7% CO2 in the lesion groupcompared with the control groups was significantly decreased, by 39%on average, for the final portion of the 3-wk study period. There wasno lesion effect on the ventilatory response to 10%O2. In this unanesthetized model,other areas suppressed by anesthesia, e.g., the reticular activatingsystem, hypothalamus, and perhaps the contralateral RTN, may providetonic input to the respiratory centers that counters the loss of RTNactivity.

  相似文献   

10.
The purpose of this study was to test thehypothesis that dysrhythmic breathing induced by the2-agonist clonidine isaccompanied by differential recruitment of respiratory muscles. Inadult goats (n = 14) electromyographic(EMG) measurements were made from inspiratory muscles (diaphragm andparasternal intercostal) and expiratory muscles [triangularissterni (TS) and transversus abdominis (Abd)]. EMG of thethyroarytenoid (TA) muscle was used as an index of upper airway(glottal) patency. Peak EMG activities of all spinal inspiratory andexpiratory muscles were augmented by central and peripheralchemoreceptor stimuli. Phasic TA was apparent in the postinspiratoryphase of the breathing cycle under normoxic conditions. Duringdysrhythmic breathing episodes induced by clonidine, TS and Abdactivities were attenuated or abolished, whereas diaphragm andparasternal intercostal activities were unchanged. There was no tonicactivation of TS or Abd EMG during apneas; however, TA activity becametonic throughout the apnea. We conclude that1) 2-adrenoceptor stimulationresults in differential recruitment of respiratory muscles duringrespiratory dysrhythmias and 2) apneas are accompanied by active glottic closure in the awake goat.

  相似文献   

11.
Failure toautoresuscitate by hypoxic gasping during prolonged sleep apnea hasbeen suggested to play a role in sudden infant death. Furthermore,maternal smoking has been repeatedly shown to be a risk factor forsudden infant death. The present experiments were carried out onnewborn rat pups to investigate the influence of perinatal exposure tonicotine (the primary pharmacological and addictive agent in tobacco)on their time to last gasp during a single hypoxic exposure and ontheir ability to autoresuscitate during repeated exposure to hypoxia.Pregnant rats received either nicotine (6 mg · kg1 · 24 h1) or vehiclecontinuously from day 6 of gestationto days 5 or 6 postpartum via an osmotic minipump.On days 5 or6 postpartum, pups were exposed eitherto a single period of hypoxia (97%N2-3% CO2) and their time to last gaspwas determined, or they were exposed repeatedly to hypoxia and theirability to autoresuscitate from primary apnea was determined. Perinatalexposure to nicotine did not alter the time to last gasp, but it didimpair the ability of pups to autoresuscitate from primary apnea. Aftervehicle, the pups were able to autoresuscitate from 18 ± 1 (SD)periods of hypoxia, whereas, after nicotine, the pups were able toautoresuscitate from only 12 ± 2 periods(P < 0.001) of hypoxia. Thus ourdata provide evidence that perinatal exposure to nicotine impairs the ability of newborn rats to autoresuscitate from primary apnea duringrepeated exposure to hypoxia, such as may occur during episodes ofprolonged sleep apnea.

  相似文献   

12.
Canet, Emmanuel, Jean-Paul Praud, and Michel A. Bureau.Periodic breathing induced on demand in awake newborn lamb. J. Appl. Physiol. 82(2): 607-612, 1997.Spontaneous periodic breathing, although a common feature infullterm and preterm human infants, is scarce in other newborn mammals.The aim of this study was to induce periodic breathing in lambs. Four10-day-old and two <48-h-old awake lambs were instrumented withjugular catheters connected to an extracorporeal membrane lung aimed atcontrolling arterial PCO2(PaCO2). ArterialPO2(PaO2) was set and maintained at thedesired level by changing inspiredO2 fraction and providingO2 through a small catheter intothe "apneic" lung. At a criticalPaO2/PaCO2combination, the four 10-day-old lambs exhibited periodic breathingthat could be initiated, terminated, and reinitiated on demand. In the2-day-old lambs with low chemoreceptor gain, periodic breathing washardly seen, regardless of the trials done to find the criticalPO2/PCO2combination. We conclude that periodic breathing can be induced inlambs and depends on criticalPaO2/PaCO2combinations and maturity of the chemoreceptors.

  相似文献   

13.
We studied the within-night variability of themaximum esophageal pressure deflection before apnea termination(DPmax) in nine patients withsevere obstructive sleep apnea as an index of the arousal threshold andthe mean electroencephalogram (EEG) delta power for each 30 s as anindex of the timing of sleep cycles. Periodicity in the time variationof delta power and DPmax was analyzed by determining their power spectral density and their relationship determined by cross correlation.DPmax and delta power variedcyclically and in phase with a major periodicity (major peak in powerspectral density) of 117.6 ± 8.8 (SE) min. The correlation betweenthe values of DPmax and deltapower was significant (P < 0.001) ineach subject (mean r = 0.47 ± 0.03), and the coherence betweenDPmax and delta power at theirdominant frequency was high. Within cycles of non-rapid-eye-movementsleep, DPmax and delta powerincreased, reaching peak values on average at or after midcycle. Thesefindings suggest that the arousal threshold to airway occlusion inpatients with obstructive sleep apnea varies cyclically during thenight synchronous to the underlying cycles of sleep.

  相似文献   

14.
Sleep apnea in obese miniature pigs   总被引:3,自引:0,他引:3  
Lonergan, Robert P., III, J. Catsby Ware, Richard L. Atkinson, W. Christopher Winter, and Paul M. Suratt. Sleep apnea in obese miniature pigs. J. Appl.Physiol. 84(2): 531-536, 1998.We postulated thatthree extremely obese Yucatan miniature pigs would have more sleepapnea than three nonobese Yucatan miniature pigs. Pigs were studiedwith the use of electroencephalograms, inductance plethysmography,oximetry, expired nasal CO2, orthermistors. All of the obese pigs, but none of the nonobese pigs, hadboth sleep apnea (8.5, 10.3, and 97.0 in obese pigs vs. 0 apnea + hypopnea/h in all nonobese pigs; P < 0.05) and oxyhemoglobin desaturation episodes during sleep [9.4 ± 3.0 vs. 0 + 0.53 (SD) mean desaturation episodes/h in obese pigsvs. nonobese pigs, respectively; P < 0.05]. Two of the extremely obese pigs had obstructive sleepapnea, whereas the third obese pig had central sleep apnea. We conclude that sleep apnea occurs in extremely obese Yucatan minipigs and suggestthat this animal can be used as a model for sleep apnea in obesity.

  相似文献   

15.
Rapid eyemovements during rapid-eye-movement (REM) sleep are associated withrapid, shallow breathing. We wanted to know whether thiseffect persisted during increased respiratory drive byCO2. In eight healthy subjects, werecorded electroencephalographic, electrooculographic, andelectromyographic signals, ventilation, and end-tidalPCO2 during the night. InspiratoryPCO2 was changed to increaseend-tidal PCO2 by 3 and 6 Torr. During normocapnia, rapid eye movements were associated with a decreasein total breath time by 0.71 ± 0.19 (SE) s(P < 0.05) because of shortenedexpiratory time (0.52 ± 0.08 s,P < 0.001) and with a reduced tidalvolume (89 ± 27 ml, P < 0.05) because of decreased rib cage contribution (75 ± 18 ml, P < 0.05). Abdominal (11 ± 16 ml, P = 0.52) and minuteventilation (0.09 ± 0.21 ml/min, P = 0.66) did not change. Inhypercapnia, however, rapid eye movements were associated with afurther shortening of total breath time. Abdominal breathing was alsoinhibited (79 ± 23 ml, P < 0.05), leading to a stronger inhibition of tidal volume and minuteventilation (1.84 ± 0.54 l/min,P < 0.05). We conclude thatREM-associated respiratory changes are even more pronounced duringhypercapnia because of additional inhibition of abdominal breathing.This may contribute to the reduction of the hypercapnic ventilatory response during REM sleep.

  相似文献   

16.
Meza, S., E. Giannouli, and M. Younes. Control ofbreathing during sleep assessed by proportional assist ventilation. J. Appl. Physiol. 84(1): 3-12, 1998.We used proportional assist ventilation (PAV) to evaluate thesources of respiratory drive during sleep. PAV increases the slope ofthe relation between tidal volume(VT) andrespiratory muscle pressure output (Pmus). We reasoned that ifrespiratory drive is dominated by chemical factors, progressiveincrease of PAV gain should result in only a small increase inVT because Pmus would bedownregulated substantially as a result of small decreases inPCO2. In the presence of substantialnonchemical sources of drive [believed to be the case inrapid-eye-movement (REM) sleep] PAV should result in a substantial increase in minute ventilation and reductionin PCO2 as the output related to thechemically insensitive drive source is amplified severalfold. Twelvenormal subjects underwent polysomnography while connected to a PAVventilator. Continuous positive air pressure (5.2 ± 2.0 cmH2O) was administered tostabilize the upper airway. PAV was increased in 2-min steps from 0 to20, 40, 60, 80, and 90% of the subject's elastance and resistance.VT, respiratory rate, minuteventilation, and end-tidal CO2pressure were measured at the different levels, and Pmus wascalculated. Observations were obtained in stage 2 sleep (n = 12), slow-wave sleep(n = 11), and REM sleep(n = 7). In all cases, Pmus wassubstantially downregulated with increase in assist so that theincrease in VT, althoughsignificant (P < 0.05), was small(0.08 liter at the highest assist). There was no difference in responsebetween REM and non-REM sleep. We conclude that respiratory driveduring sleep is dominated by chemical control and that there is nofundamental difference between REM and non-REM sleep in this regard.REM sleep appears to simply add bidirectional noise to what isbasically a chemically controlled respiratory output.

  相似文献   

17.
Schneider, H., C. D. Schaub, K. A. Andreoni, A. R. Schwartz,R. L. Smith, J. L. Robotham, and C. P. O'Donnell. Systemic andpulmonary hemodynamic responses to normal and obstructed breathing during sleep. J. Appl. Physiol. 83(5):1671-1680, 1997.We examined the hemodynamic responses to normalbreathing and induced upper airway obstructions during sleep in acanine model of obstructive sleep apnea. During normal breathing,cardiac output decreased (12.9 ± 3.5%,P < 0.025) from wakefulness tonon-rapid-eye-movement sleep (NREM) but did not change from NREM torapid-eye-movement (REM) sleep. There was a decrease(P < 0.05) in systemic (7.2 ± 2.1 mmHg) and pulmonary (2.0 ± 0.6 mmHg) arterial pressures fromwakefulness to NREM sleep. In contrast, systemic (8.1 ± 1.0 mmHg,P < 0.025), but not pulmonary,arterial pressures decreased from NREM to REM sleep. During repetitiveairway obstructions (56.0 ± 4.7 events/h) in NREM sleep, cardiacoutput (17.9 ± 3.1%) and heart rate (16.2 ± 2.5%) increased(P < 0.05), without a change instroke volume, compared with normal breathing during NREM sleep. Duringsingle obstructive events, left (7.8 ± 3.0%,P < 0.05) and right (7.1 ± 0.7%, P < 0.01)ventricular outputs decreased during the apneic period. However, left(20.7 ± 1.6%, P < 0.01) andright (24.0 ± 4.2%, P < 0.05)ventricular outputs increased in the postapneic period because of anincrease in heart rate. Thus 1) thesystemic, but not the pulmonary, circulation vasodilates during REMsleep with normal breathing; 2)heart rate, rather than stroke volume, is the dominant factormodulating ventricular output in response to apnea; and3) left and right ventricular outputs oscillate markedly and in phase throughout the apnea cycle.

  相似文献   

18.
Williams, J. S., and T. G. Babb. Differences betweenestimates and measured PaCO2 during restand exercise in older subjects. J. Appl.Physiol. 83(1): 312-316, 1997.ArterialPCO2 (PaCO2) has been estimated duringexercise with good accuracy in younger individuals by using the Jonesequation(PJCO2)(J. Appl. Physiol. 47: 954-960,1979). The purpose of this project was to determine the utility ofestimating PaCO2 from end-tidal PCO2(PETCO2) orPJCO2at rest, ventilatory threshold (Th), and maximalexercise (Max) in older subjects. PETCO2 was determined fromrespired gases simultaneously (MGA 1100) with arterial blood gases(radial arterial catheter) in 12 older and 11 younger subjects at restand during exercise. Mean differences were analyzed with pairedt-tests, and relationships between theestimated PaCO2 values and the actualvalues of PaCO2 were determined withcorrelation coefficients. In the older subjects, PETCO2 was not significantlydifferent from PaCO2 at rest (1.2 ± 4.3 Torr), Th (0.4 ± 2.5), or Max(0.8 ± 2.7), and the two were significantly(P < 0.05) correlated atth (r = 0.84) andMax (r = 0.87) but not atrest (r = 0.47).PJCO2was similar to PaCO2 at rest (1.0 ± 3.9) and th (1.3 ± 2.3) but significantly lower at Max (3.0 ± 2.6), and the two weresignificantly correlated at th(r = 0.86) and Max(r = 0.80) but not at rest (r = 0.54).PETCO2 was significantlyhigher than PaCO2 during exercise in theyounger subjects but similar to PaCO2 at rest.PJCO2was similar to PaCO2 at rest andth but significantly lower at Max in youngersubjects. In conclusion, our data demonstrate thatPaCO2 during exercise is betterestimated by PETCO2 than byPJCO2in older subjects, contrary to what is observed in younger subjects.This appears to be related to the finding thatPETCO2 does not exceedPaCO2 during exercise in older subjects,as occurs in the younger subjects. However,PaCO2 at rest is best estimated byPJCO2in both younger and older subjects.

  相似文献   

19.
Krishnan, Bharath S., Ron E. Clemens, Trevor A. Zintel,Martin J. Stockwell, and Charles G. Gallagher. Ventilatory response to helium-oxygen breathing during exercise: effect of airwayanesthesia. J. Appl. Physiol. 83(1):82-88, 1997.The substitution of a normoxic helium mixture(HeO2) for room air (Air) during exercise results in a sustained hyperventilation, which is present evenin the first breath. We hypothesized that this response is dependent onintact airway afferents; if so, airway anesthesia (Anesthesia) shouldaffect this response. Anesthesia was administered to the upper airwaysby topical application and to lower central airways by aerosolinhalation and was confirmed to be effective for over 15 min. Subjectsperformed constant work-rate exercise (CWE) at 69 ± 2 (SE) % maximal work rate on a cycle ergometer on three separate days: twiceafter saline inhalation (days 1 and3) and once after Anesthesia(day 2). CWE commenced after a briefwarm-up, with subjects breathing Air for the first 5 min (Air-1),HeO2 for the next 3 min, and Airagain until the end of CWE (Air-2). The resistance of the breathingcircuit was matched for Air andHeO2. BreathingHeO2 resulted in a small butsignificant increase in minute ventilation(I) anddecrease in alveolar PCO2 in both theSaline (average of 2 saline tests; not significant) and Anesthesiatests. Although Anesthesia had no effect on the sustainedhyperventilatory response to HeO2breathing, theI transientswithin the first six breaths ofHeO2 were significantly attenuatedwith Anesthesia. We conclude that theI response to HeO2 is not simply due to areduction in external tubing resistance and that, in humans, airwayafferents mediate the transient but not the sustained hyperventilatoryresponse to HeO2 breathing duringexercise.

  相似文献   

20.
Assisted ventilation with pressure support (PSV)or proportional assist (PAV) ventilation has the potential to produceperiodic breathing (PB) during sleep. We hypothesized that PB willdevelop when PSV level exceeds the product of spontaneous tidal volume (VT) and elastance(VTsp · E)but that the actual level at which PB will develop[PSV(PB)] will be influenced by thePCO2 (difference between eupneicPCO2 andCO2 apneic threshold) and by RR[response of respiratory rate (RR) to PSV]. We also wishedto determine the PAV level at which PB develops to assess inherentventilatory stability in normal subjects. Twelve normal subjectsunderwent polysomnography while connected to a PSV/PAV ventilatorprototype. Level of assist with either mode was increased in smallsteps (2-5 min each) until PB developed or the subject awakened.End-tidal PCO2,VT, RR, and airway pressure (Paw) were continuously monitored, and the pressure generated byrespiratory muscle (Pmus) was calculated. The pressure amplification factor (PAF) at the highest PAV level was calculated from[(Paw + Pmus)/Pmus], where Paw is peak Paw  continuous positive airway pressure. PB with central apneas developedin 11 of 12 subjects on PSV. PCO2ranged from 1.5 to 5.8 Torr. Changes in RR with PSV were small andbidirectional (+1.1 to 3.5min1). With use ofstepwise regression, PSV(PB) was significantly correlated withVTsp(P = 0.001), E(P = 0.00009),PCO2 (P = 0.007), and RR(P = 0.006). The final regressionmodel was as follows: PSV(PB) = 11.1 VTsp + 0.3E  0.4 PCO2  0.34 RR  3.4 (r = 0.98). PBdeveloped in five subjects on PAV at amplification factors of1.5-3.4. It failed to occur in seven subjects, despite PAF of upto 7.6. We conclude that 1) aPCO2 apneic threshold exists duringsleep at 1.5-5.8 Torr below eupneicPCO2,2) the development of PB during PSVis entirely predictable during sleep, and3) the inherent susceptibility to PBvaries considerably among normal subjects.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号