首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ribonucleic acid (RNA)-dependent RNA polymerase has been demonstrated in Kern Canyon virus (KCV) particles. The RNA product of the KCV polymerase hybridizes to KCV viral RNA. The properties of this viral enzyme have been characterized and compared with those of vesicular stomatitis virus (VSV). RNA polymerases from both viruses require similar conditions of temperature, pH, and detergent and magnesium concentrations for maximal synthesis of RNA. The RNA polymerase contained in the virion of KCV was more dependent on the presence of a sulfhydryl agent than was the VSV enzyme. Under optimal conditions, the specific activity of the VSV polymerase is about twenty-five times as great as that of KCV.  相似文献   

2.
The viral polymerase of influenza virus, a negative-strand RNA virus, is believed to polyadenylate the mRNAs by stuttering at a stretch of five to seven uridine residues which are located close to the 5' ends of the viral RNA templates. However, a mechanism of polyadenylation based on a template-independent synthesis of the poly(A) tail has not been excluded. In this report, we present new evidence showing the inherent ability of the viral polymerase to stutter at the poly(U) stretch of a viral RNA template during RNA replication. Variants which possess 1- to 13-nucleotide-long insertions at the poly(U) stretch have been identified. These results support a stuttering mechanism for the polyadenylation of influenza virus mRNAs.  相似文献   

3.
4.
5.
6.
Giardia lamblia, a parasitic protozoan, can contain a double-stranded RNA (dsRNA) virus, GLV (1). We have identified an RNA polymerase activity present specifically in cultures of GLV infected cells. This RNA polymerase activity is present in crude whole cell lysates as well as in lysates from GLV particles purified from the culture medium. The RNA polymerase has many characteristics common to other RNA polymerases (e.g. it requires divalent cations and all four ribonucleoside triphosphates), yet it is not inhibited by RNA polymerase inhibitors such as alpha-amanitin or rifampicin. The RNA polymerase activity synthesizes RNAs corresponding to one strand of the GLV genome, although under the present experimental conditions, the RNA products of the reaction are not full length viral RNAs. The in vitro products of the RNA polymerase reaction co-sediment through sucrose gradients with viral particles; and purified GLV viral particles have RNA polymerase activity. The RNA polymerase activities within and outside of infected cells closely parallel the amount of virus present during the course of viral infection. The similarities between the RNA polymerase of GLV and the polymerase associated with the dsRNA virus system of yeast are discussed.  相似文献   

7.
The mechanism by which viral RNA-dependent RNA polymerases (RdRp) specifically amplify viral genomes is still unclear. In the case of flaviviruses, a model has been proposed that involves the recognition of an RNA element present at the viral 5' untranslated region, stem-loop A (SLA), that serves as a promoter for NS5 polymerase binding and activity. Here, we investigated requirements for specific promoter-dependent RNA synthesis of the dengue virus NS5 protein. Using mutated purified NS5 recombinant proteins and infectious viral RNAs, we analyzed the requirement of specific amino acids of the RdRp domain on polymerase activity and viral replication. A battery of 19 mutants was designed and analyzed. By measuring polymerase activity using nonspecific poly(rC) templates or specific viral RNA molecules, we identified four mutants with impaired polymerase activity. Viral full-length RNAs carrying these mutations were found to be unable to replicate in cell culture. Interestingly, one recombinant NS5 protein carrying the mutations K456A and K457A located in the F1 motif lacked RNA synthesis dependent on the SLA promoter but displayed high activity using a poly(rC) template. Promoter RNA binding of this NS5 mutant was unaffected while de novo RNA synthesis was abolished. Furthermore, the mutant maintained RNA elongation activity, indicating a role of the F1 region in promoter-dependent initiation. In addition, four NS5 mutants were selected to have polymerase activity in the recombinant protein but delayed or impaired virus replication when introduced into an infectious clone, suggesting a role of these amino acids in other functions of NS5. This work provides new molecular insights on the specific RNA synthesis activity of the dengue virus NS5 polymerase.  相似文献   

8.
The time course of vaccinia deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase synthesis and its intracellular localization were studied with virus-infected HeLa cells. Viral RNA polymerase activity could be meassured shortly after viral infection in the cytoplasmic fraction of infected cells in vitro. However, unless the cells were broken in the presence of the nonionic detergent Triton-X-100, no significant synthesis of new RNA polymerase was detected during the viral growth cycle. When cells were broken in the presence of this detergent, extensive increases in viral RNA polymerase activity were observed late in the infection cycle. The onset of new RNA polymerase synthesis was dependent on prior viral DNA replication. Fluorodeoxyuridine (5 x 10(-5)m) prevented the onset of viral polymerase synthesis. Streptovitacin A, a specific and complete inhibitor of protein synthesis in HeLa cells, prevented the synthesis of RNA polymerase. Thus, the synthesis of RNA polymerase is a "late" function of the virus. The newly synthesized RNA polymerase activity was primarily bound to particles which sedimented during high-speed centrifugation. These particles have been characterized by sucrose gradient centrifugation. A major class of active RNA polymerase particles were considerably "lighter" than whole virus in sucrose gradients. These particles were entirely resistant to the action of added pancreatic deoxyribonuclease, and they were not stimulated by added calf thymus primer DNA. It is concluded that these particles are not active in RNA synthesis in vivo, and that activation occurs as a result of detergent treatment in vitro.  相似文献   

9.
The report in 1971 by Comuet and Astier‐Manifacier that Chinese cabbage contains an active RNA‐dependent RNA polymerase has been extended to all plants studied. This has met with much opposition because the central dogma of molecular biology requires no replication mechanism for RNA. Only upon RNA virus infection are such enzymes needed, and it was generally believed that these were always and only virus‐coded. The purification and characterization of several of these plant viruses will be reviewed, with particular reference to the fact that while their amount in plant tissue is variably increased by various RNA virus infections their nature is unaffected by the viral genome and is strictly host‐specific. It will be noted, however, that in a specific instance viral infection has been shown to affect an important property of the enzyme. Also, it has become evident that certain plant viruses resemble animal picorna viruses (e.g., polio virus) and that these viruses carry an RNA polymerase gene. The same may be true, but has not been proven, for a small group of plant viruses that shows resemblances to the prokaryotic RNA phages in which a viral gene product together with host proteins form the RNA polymerase. An important question that remains to be solved in future work is the role of RNA polymerases in normal plant cell biology. Also, the mechanism by which viral infection causes the enzyme to become largely membrane or organelle bound and possibly conformationally changed in the process remains to be elucidated.  相似文献   

10.
Influenza virus polymerase complex is a heterotrimer consisting of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). Of these, only PB1, which has been implicated in RNA chain elongation, possesses the four conserved motifs (motifs I, II, III, and IV) and the four invariant amino acids (one in each motif) found among all viral RNA-dependent RNA or RNA-dependent DNA polymerases. We have modified an assay system developed by Huang et al. (T.-J. Huang, P. Palese, and M. Krystal, J. Virol. 64:5669-5673, 1990) to reconstitute the functional polymerase activity in vivo. Using this assay, we have examined the requirement of each of these motifs of PB1 in polymerase activity. We find that each of these invariant amino acids is critical for PB1 activity and that mutation in any one of these residues renders the protein nonfunctional. We also find that in motif III, which contains the SSDD sequence, the signature sequence of influenza virus RNA polymerase, SDD is essentially invariant and cannot accommodate sequences found in other RNA viral polymerases. However, conserved changes in the flanking sequences of SDD can be partially tolerated. These results provide the experimental evidence that influenza virus PB1 possesses a similar polymerase module as has been proposed for other RNA viruses and that the core SDD sequence of influenza virus PB1 represents a sequence variant of the GDN in negative-stranded nonsegmented RNA viruses, GDD in positive-stranded RNA virus and double-stranded RNA viruses, or MDD in retroviruses.  相似文献   

11.
12.
Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3' end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3'-UTR, we found that the RNA-RNA interaction mediated by 5'-3'-hybridization was able to release the silencing effect of the 3'-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.  相似文献   

13.
14.
P Roy  A Fukusho  G D Ritter    D Lyon 《Nucleic acids research》1988,16(24):11759-11767
The nucleotide sequence of segment 1 of the double stranded RNA genome of bluetongue virus serotype 10 (BTV-10), encoding the largest viral core protein, VP1, has been determined. Linear sequence analysis of the predicted amino acid sequence of the 149-K Da protein, a putative component of the viral RNA-directed RNA polymerase, revealed extensive homology with the vaccinia virus 147K Da DNA-directed RNA polymerase subunit. Similar homologies were detected between the VP1 polypeptide and the beta chain subunit of Escherichia coli and common tobacco chloroplast RNA polymerases, yeast RNA polymerase II and III and fruit fly polymerase II.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号