首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.  相似文献   

3.
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC.  相似文献   

4.
Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.  相似文献   

5.
6.
Cancer stem cells (CSCs) typically have the capacity to evade chemotherapy and may be the principal source of metastases. CSCs for human pancreatic ductal carcinoma (PDAC) have been identified, but neither the metastatic potential nor the chemoresistance of these cells has been adequately evaluated. We have addressed these issues by examining side-population (SP) cells isolated from the Panc-1 and BxPC3 lines of human PDAC cells, the oncogenotypes of which differ. SP cells could be isolated from monolayers of Panc-1, but only from spheroids of BxPC3. Using orthotopic xenografts into the severely immunocompromised NSG mouse, we found that SP cells isolated from both cell lines produced tumors that were highly metastatic, in contrast to previous experience with PDAC cell lines. SP cells derived from both cell lines expressed the ABCG2 transporter, which was demonstrably responsible for the SP phenotype. SP cells gave rise to non-SP (NSP) cells in vitro and in vivo, a transition that was apparently due to posttranslational inhibition of the ABCG2 transporter. Twenty-two other lines of PDAC cells also expressed ABCG2. The sensitivity of PDAC SP cells to the vinca alkaloid vincristine could be greatly increased by verapamil, a general inhibitor of transporters. In contrast, verapamil had no effect on the killing of PDAC cells by gemcitabine, the current first-line therapeutic for PDAC. We conclude that the isolation of SP cells can be a convenient and effective tool for the study of PDAC CSCs; that CSCs may be the principal progenitors of metastasis by human PDAC; that the ABCG2 transporter is responsible for the SP phenotype in human PDAC cells, and may be a ubiquitous source of drug-resistance in PDAC, but does not confer resistance to gemcitabine; and that inhibition of ABCG2 might offer a useful adjunct in a therapeutic attack on the CSCs of PDAC.  相似文献   

7.
Pancreatic ductal adenocarcinoma (PDAC) patients are frequently treated by chemotherapy. Even if personalized therapy based on molecular analysis can be performed for some tumors, PDAC regimens selection is still mainly based on patients' performance status and expected efficacy. Therefore, the establishment of molecular predictors of chemotherapeutic efficacy could potentially improve prognosis by tailoring treatments. We have recently developed an RNA-based signature that predicts the efficacy of adjuvant gemcitabine using 38 PDAC primary cell cultures. While demonstrated its efficiency, a significant association with the classical/basal-like PDAC spectrum was observed. We hypothesized that this flaw was due to the basal-like biased phenotype of cellular models used in our strategy. To overcome this limitation, we generated a prospective cohort of 27 consecutive biopsied derived pancreatic organoids (BDPO) and include them in the signature identification strategy. As BDPO's do not have the same biased phenotype as primary cell cultures we expect they can compensate one with each other and cover a broader range of molecular phenotypes. We then obtained an improved signature predicting gemcitabine sensibility that was validated in a cohort of 300 resected PDAC patients that have or have not received adjuvant gemcitabine. We demonstrated a significant association between the improved signature and the overall and disease-free survival in patients predicted as sensitive and treated with adjuvant gemcitabine. We propose then that including BDPO along primary cell cultures represent a powerful strategy that helps to overcome primary cell cultures limitations producing unbiased RNA-based signatures predictive of adjuvant treatments in PDAC.  相似文献   

8.
Gemcitabine has limited clinical benefits for pancreatic ductal adenocarcinoma (PDAC). The phosphatidylinositol-3-kinase (PI3K)/AKT and mammalian target of rapamycin (mTOR) signaling pathways are frequently dysregulated in PDAC. We investigated the effects of NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, in combination with gemcitabine and endothelial monocyte activating polypeptide II (EMAP) in experimental PDAC. Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. Animal survival experiments were performed in murine xenografts. BEZ235 caused a decrease in phospho-AKT and phospho-mTOR expression in PDAC (AsPC-1), endothelial (HUVECs), and fibroblast (WI-38) cells. BEZ235 inhibited in vitro proliferation of all four PDAC cell lines tested. Additive effects on proliferation inhibition were observed in the BEZ235-gemcitabine combination in PDAC cells and in combination of BEZ235 or EMAP with gemcitabine in HUVECs and WI-38 cells. BEZ235, alone or in combination with gemcitabine and EMAP, induced apoptosis in AsPC-1, HUVECs, and WI-38 cells as observed by increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. Compared to controls (median survival: 16 days), animal survival increased after BEZ235 and EMAP therapy alone (both 21 days) and gemcitabine monotherapy (28 days). Further increases in survival occurred in combination therapy groups BEZ235 + gemcitabine (30 days, P = 0.007), BEZ235 + EMAP (27 days, P = 0.02), gemcitabine + EMAP (31 days, P = 0.001), and BEZ235 + gemcitabine + EMAP (33 days, P = 0.004). BEZ235 has experimental PDAC antitumor activity in vitro and in vivo that is further enhanced by combination of gemcitabine and EMAP. These findings demonstrate advantages of combination therapy strategies targeting multiple pathways in pancreatic cancer treatment.  相似文献   

9.
Recently, many researches have reported that antibiotic tigecycline has significant effect on cancer treatment. However, biomedical functions and molecular mechanisms of tigecycline in human pancreatic ductal adenocarcinoma (PDAC) remain unclear. In the current study, we tried to assess the effect of tigecycline in PDAC cells. AsPC-1 and HPAC cells were treated with indicated concentrations of tigecycline for indicated time, and then, MTT, BrdU and soft agar assay were used to test cell proliferation. The effect of tigecycline on cell cycle and cellular apoptosis was tested by cytometry. Migration and invasion were detected by wound healing assay and transwell migration/invasion assay. Expressions of cell cycle-related and migration/invasion-related protein were determined by using Western blot. The results revealed that tigecycline observably suppressed cell proliferation by inducing cell cycle arrest at G0/G1 phase and blocked cell migration/invasion via holding back the epithelial-mesenchymal transition (EMT) process in PDAC. In addition, tigecycline also remarkably blocked tumorigenecity in vivo. Furthermore, the effects of tigecycline alone or combined with gemcitabine in vitro or on PDAC xenografts were also performed. The results showed that tigecycline enhanced the chemosensitivity of PDAC cells to gemcitabine. Interestingly, we found CCNE2 expression was declined distinctly after tigecycline treatment. Then, CCNE2 was overexpressed to rescue tigecycline-induced effect. The results showed that CCNE2 overexpression significantly rescued tigecycline-inhibited cell proliferation and migration/invasion. Collectively, we showed that tigecycline inhibits cell proliferation, migration and invasion via down-regulating CCNE2, and tigecycline might be used as a potential drug for PDAC treatment alone or combined with gemcitabine.  相似文献   

10.
Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31+ vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.  相似文献   

11.
BackgroundPancreatic carcinoma is one of the deadliest malignant diseases, in which the increased expression of α1,6-fucosyltransferase (FUT8), a sole enzyme responsible for catalyzing core fucosylation, has been reported. However, its pathological roles and regulatory mechanisms remain largely unknown. Here, we use two pancreatic adenocarcinoma cell lines, MIA PaCa-2 and PANC-1 cells, as cell models, to explore the relationship of FUT8 with the malignant transformation of PDAC.MethodsFUT8 knockout (FUT8-KO) cells were established by the CRISPR/Cas9 system. Cell migration was analyzed by transwell and wound-healing assays. Cell proliferation was examined by MTT and colony-formation assays. Cancer stemness markers and spheroid formations were used to analyzed cancer stemness features.ResultsDeficiency of FUT8 inhibited cell migration and proliferation in both MIA PaCa-2 and PANC-1 cells compared with wild-type cells. Moreover, the expression levels of cancer stemness markers such as EpCAM, CXCR4, c-Met, and CD133 were decreased in the FUT8-KO cells compared with wild-type cells. Also, the spheroid formations in the KO cells were loose and unstable, which could be reversed by restoration with FUT8 gene in the KO cells. Additionally, FUT8-KO increased the chemosensitivity to gemcitabine, which is the first-line therapy for advanced pancreatic cancer.ConclusionsFUT8-KO reduced the cell proliferation and migration. Our results are the first to suggest that the expression of FUT8 is involved in regulating the stemness features of pancreatic cancer cells.General significanceFUT8 could provide novel insights for the treatment of pancreatic carcinoma.  相似文献   

12.
To investigate the impact of oncogenic protein kinase C isoform ι (PKCι) on the microenvironment and the immunogenic properties of pancreatic tumors, we prohibit PKCι activity in various pancreatic ductal adenocarcinoma (PDAC) cell lines and co-culture them with human natural killer NK92 cells. The results demonstrate that PKCι suppression enhances the susceptibility of PDAC to NK cytotoxicity and promotes the degranulation and cytolytic activity of co-cultured NK92 cells. Mechanistic studies pinpoint that downstream of KRAS, both YAP1 and STAT3 are recruited by oncogenic PKCι to elevate the expression of PDL1, contributing to constitute an immune suppressive microenvironment in PDAC. Co-culture with NK92 further induces PDL1 upregulation via STAT3 to stimulate immune escape of PDAC cells. Subsequently, inhibition of PKCι in PDAC alleviates the immune suppression and enhances the cytotoxicity of NK92 towards PDAC through restraining PDL1 overexpression. Combined with PD1/PDL1 blocker, PKCι inhibitor remarkably elevates the cytotoxicity of NK92 against PDAC cells in vitro, establishing PKCι inhibitor as a promising candidate for boosting the immunotherapy of PDAC.  相似文献   

13.
14.
15.
Two tetrahydroquinoline compounds, called DM8 and DM12, from a new series of the cis-2,4-diaryl-r-3-methyl-1,2,3,4-tetrahydroquinolines, were selected for cytotoxic effects studies on cellular lines of human breast cancer. The synergistic, additive and antagonistic effects in combination of these compounds with anticancer drugs, such as paclitaxel and gemcitabine, were studied. The isobolograms and their analysis demonstrated models of synergism, additivity and antagonism of these tetrahydroquinolines in the presence of paclitaxel and gemcitabine. Results showed that compounds DM8 and DM12 individually induced growth inhibition on breast cancer cell lines MCF-7 and SKBR3, and the addition of paclitaxel and gemcitabine intensified their cytotoxic activity on both cell lines at conc. below 1 μg/mL. During these studies the compound DM12 was identified as new, perspective and safe agent for adjuvant therapy.  相似文献   

16.

Background

The hedgehog (Hh) pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC). Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s) that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM)-derived cells.

Methodology/Principal Findings

Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs) were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity.

Conclusions/Significance

We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial tumorigenesis.  相似文献   

17.
Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (KrasG12DPdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70–75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC.  相似文献   

18.
Human pancreatic ductal adenocarcinoma (PDAC) is a cancer with a dismal prognosis. The efficacy of PDAC anticancer therapies is often short-lived; however, there is little information on how this disease entity so frequently gains resistance to treatment. We adopted the concept of cancer stem cells (CSCs) to explain the mechanism of resistance and evaluated the efficacy of a candidate anticancer drug to target these therapy-resistant CSCs. We identified a subpopulation of cells in PDAC with CSC features that were enriched for aldehyde dehydrogenase (ALDH), a marker expressed in certain stem/progenitor cells. These cells were also highly resistant to, and were further enriched by, treatment with gemcitabine. Similarly, surgical specimens from PDAC patients showed that those who had undergone preoperative chemo-radiation therapy more frequently displayed cancers with ALDH strongly positive subpopulations compared with untreated patients. Importantly, these ALDH-high cancer cells were sensitive to disulfiram, an ALDH inhibitor, when tested in vitro. Furthermore, in vivo xenograft studies showed that the effect of disulfiram was additive to that of low-dose gemcitabine when applied in combination. In conclusion, human PDAC-derived cells that express high levels of ALDH show CSC features and have a key role in the development of resistance to anticancer therapies. Disulfiram can be used to suppress this therapy-resistant subpopulation.  相似文献   

19.
The aim of this study was to investigate in vitro magnetic resonance imaging (MRI) of PDAC using ENO1-targeted superparamagnetic iron oxide nanoparticles and xenograft models. Expression level and location of ENO1 protein in pancreatic cancer cell lines of CFPAC-1 and MiaPaCa-2 were detected by Western blotting, flow cytometry and confocal microscopy. Dex-g-PCL/SPIO nanoparticles targeting ENO1 were constructed with ENO1 antibody and characterized by MRI. In addition, ENO1-Dex-g-PCL/SPIO nanoparticles were tested to assess their efficacy on the detection of PDAC using in vitro and in vivo MRI. The results showed that ENO1 was expressed in both human PDAC cell lines of CFPAC-1 and MiaPaCa-2, demonstrating that the localization of cytoplasm and membrane was dominant. It was confirmed that ENO1 antibody was connected to the SPIO surface in ENO1-Dex-g-PCL/SPIO nanoparticles. The nanoparticles had satisfactory superparamagnetism and significantly enhance the detection of PDAC by in vivo and in vitro MRI. In conclusion, ENO1 can serve as a membrane protein expressed on human PDAC cell lines. ENO1-targeted SPIO nanoparticles using ENO1 antibody can increase the efficiency of detection of PDAC by in vitro and in vivo MRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号