首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
By electrophysiological methods, effect of temperature on cricket tympanal organ functions was studied. Activity of auditory receptors was recorded intracellularly in the 5th nerve of I thoracic ganglion in Tettigonia cantans, Metrioptera roeselii, M. bicolor, Platycleis albopunctata, Pholidoptera griseoaptera, and Phaneroptera falcata. The temperature was changed in the range from 17 to 34° C. Heating of the tympanal organ to 30–32°C led to a decrease of impulse amplitude, shortening of their duration, an increase of sensitivity, of the burst instantaneous frequency, and of the number of impulses in the responses as well as to a decrease of latent periods (LP) of receptor reaction. The optimal frequency in all studied cells did not change, although the range of perceived frequencies was enlarged. The frequency threshold curve of receptor either was shifted down along the ordinate scale without changes of its shape or the thresholds at various frequencies decreased non-uniformly. Thus, the obtained data indicate the absence of changes in the frequency tuning of the auditory receptors with changes of temperature.  相似文献   

2.
Summary Physiological recordings were obtained from identified receptors in the tympanal organ ofGryllus bimaculatus. By immersing the prothoracic leg in Ringer solution and removing the anterior tympanic membrane the auditory receptors were exposed without significantly altering the frequency response of the auditory organ (Fig. 1). Each receptor was tuned to a specific sound frequency. For sound frequencies below this characteristic frequency the roll-off in sensitivity decreased from 20–30 dB/octave to 10–15 dB/octave as the characteristic frequency of receptors increased from 3–11 kHz (Fig. 4A). For each individual receptor the slope, dynamic range and maximum spike response were similar for different sound frequencies (Fig. 9A). The receptors were tonotopically organized with the characteristic frequency of the receptors increasing from the proximal to the distal end of the array (Figs. 5, 6). Several receptors had characteristic frequencies of 5 kHz. These receptors were divided into two groups on the basis of their maximum spike response produced in response to pure tones of increasing intensity (Fig. 7). Independent of the tuning of the receptor no two-tone inhibition was observed in the periphery, thus confirming that such interactions are a property of central integration.  相似文献   

3.
Peripheral auditory frequency tuning in the ensiferan insect Cyphoderris monstrosa (Orthoptera: Haglidae) was examined by comparing tympanal vibrations and primary auditory receptor responses. In this species there is a mis-match between the frequency of maximal auditory sensitivity and the frequency content of the species' acoustic signals. The mis-match is not a function of the mechanical properties of the tympanum, but is evident at the level of primary receptors. There are two classes of primary receptors: low-tuned and broadly tuned. Differences in the absolute sensitivity of the two receptor types at the male song frequency would allow the auditory system to discriminate intraspecific signals from sounds containing lower frequencies. Comparisons of tympanal and receptor tuning indicated that the sensitivity of the broadly tuned receptors did not differ from that of the tympanum, while low-tuned receptors had significantly narrower frequency tuning. The results suggest that the limited specialization for the encoding of intraspecific signals in the auditory system of C. monstrosa is a primitive rather than a degenerate condition. The limited specialization of C. monstrosa may reflect the evolutionary origin of communication-related hearing from a generalized precursor through the addition of peripheral adaptations (tympana, additional receptors) to enhance frequency sensitivity and discrimination. Accepted: 13 March 1999  相似文献   

4.
The auditory system in larvae of the migratory locust   总被引:1,自引:0,他引:1  
ABSTRACT. The course and projection areas of the tympanal receptor fibres in the thoracic ventral cord were revealed by iontophoresis in the last three larval instars. There were no significant differences between the arrangement in larvae and that in adults. The threshold curves of the auditory organ of the last three instars were measured by recording summed potentials in the tympanal nerve. In the frequency range tested (1–20 kHz), larvae and adults differed only in sensitivity. More detailed information was obtained by single-cell recordings from receptor neurones in the tympanal nerve of last instar larvae. No differences could be shown between the threshold curves, or the suprathreshold activity, of low frequency receptors of last instars and adults. However, the high frequency receptors of the last instars are far less sensitive in the frequency range above 12 kHz. This seems to depend on the different mechanical properties of the tympanum in larvae. The response patterns of some typical ventralcord neurones (G-, K-, B-type) were identified by extracellular single-cell recordings in last instar larvae. Convergence of auditory and vibratory inputs onto the G-neurone and the B-neurone (as is known to exist in the adult) was found in larvae in the final and penultimate instars to be causing similar response patterns.  相似文献   

5.
Poikilothermic animals are affected by variations in environmental temperature, as the basic properties of nerve cells and muscles are altered. Nevertheless, insect sensory systems, such as the auditory system, need to function effectively over a wide range of temperatures, as sudden changes of up to 10 °C or more are common. We investigated the performance of auditory receptor neurons and properties of the tympanal membrane of Locusta migratoria in response to temperature changes. Intracellular recordings of receptors at two temperatures (21 and 28 °C) revealed a moderate increase in spike rate with a mean Q10 of 1.4. With rising temperature, the spike rate–intensity–functions exhibited small decreases in thresholds and expansions of the dynamic range, while spike durations decreased. Tympanal membrane displacement, investigated using microscanning laser vibrometry, exhibited a small temperature effect, with a Q10 of 1.2. These findings suggest that locusts are affected by shifts in temperature at the periphery of the auditory pathway, but the effects on spike rate, sensitivity, and tympanal membrane displacement are small. Robust encoding of acoustic signals by only slightly temperature-dependent receptor neurons and almost temperature-independent tympanal membrane properties might enable locusts and grasshoppers to reliably identify sounds in spite of changes of their body temperature.  相似文献   

6.
Summary The morphology of the complex tibial organs in the forelegs of two bushcricket species belonging to the Phaneropterinae and Decticinae (Tettigoniidae) is described comparatively. In both species the tibial organs are made up of the subgenual organ, the intermediate organ and the crista acustica; the latter are parts of the tympanal organs and serve as auditory receptors. The very thin tympana in the forelegs ofPholidoptera griseoaptera (Decticinae) are protected by tympanal covers whereas inLeptophyes punctatissima (Phaneropterinae) the tympana are thicker and fully exposed. The overall auditory sensitivity ofL. punctatissima is lower and the sensitivity maximum of the hearing threshold lies at higher frequencies compared toP. griseoaptera. The number of scolopidia in the three scolopale organs and the dimensions of parts of the sound conducting system differs in the two species. In the crista acustica ofL. punctatissima a higher number of scolopidia is distributed in a smaller range than inP. griseoaptera; the scolopidia are especially concentrated in the distal part. Morphometrical analyses indicate that the dimensions of the spiracles, the acoustic trachea and the tympana determine the overall auditory sensitivity and that the arrangement of the scolopidia and the dimensions of structures in the crista acustica affect the frequency tuning of the hearing threshold.  相似文献   

7.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears.The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

8.
Abstract. Directional hearing is investigated in males of two species of cicadas, Tympanistalna gastrica (Stål) and Tettigetta josei Boulard, that are similar in size but show different calling song spectra. The vibrational response of the ears is measured with laser vibrometry and compared with thresholds determined from auditory nerve recordings. The data are used to investigate to what extent the directional characteristic of the tympanal vibrations is encoded by the activity of auditory receptors. Laser measurements show complex vibrations of the tympanum, and reveal that directional differences are rather high (>15 dB) in characteristic but limited frequency ranges. At low frequencies, both species show a large directional difference at the same frequency (3–5 kHz) whereas, above 10 kHz, the directional differences correspond to the different resonant frequencies of the respective tymbals. Consequently, due to the mechanical resonance of the tymbal, the frequency range at which directional differences are high differs between the two species that otherwise show similar dimensions of the acoustic system. The directional differences observed in the tympanal vibrations are also observed in the auditory nerve activity. These recordings confirm that the biophysically determined directional differences are available within the nervous system for further processing. Despite considerable intra as well as interindividual variability, the ears of the cicadas investigated here exhibit profound directional characteristics, because the thresholds determined from recordings of the auditory nerve at 30° to the right and left of the longitudinal axis differ by more than 5 dB.  相似文献   

9.
Tympanal organs are widespread in Nymphalidae butterflies, with a great deal of variability in the morphology of these ears. How this variation reflects differences in hearing physiology is not currently understood. This study provides the first examination of hearing organs in the crepuscular owl butterfly, Caligo eurilochus. We examined the tuning and sensitivity of the C. eurilochus hearing organ, called Vogel’s organ, using laser Doppler vibrometry and extracellular neurophysiology. We show that the C. eurilochus ear responds to sound and is most sensitive to frequencies between 1 and 4 kHz, as confirmed by both the vibration of the tympanal membrane and the physiological response of the associated nerve branches. In comparison to the hearing of its diurnally active relative, Morpho peleides, C. eurilochus has a narrower frequency range with higher auditory thresholds. Hypotheses explaining the function of hearing in this crepuscular butterfly are discussed.  相似文献   

10.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears. The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

11.
Summary The mechanical transmission of sound in the tympanal organ of adults and 5th instar larvae ofLocusta migratoria andSchistocerca gregaria has been investigated by means of stroboscopic measurements within a frequency range from 1–20 kHz.Frequency dependent spatial distributions of amplitudes and phases of oscillation on the tympanal membrane and the Müller's organ could be demonstrated. Cuticular structures on the membrane may act as a lever arm (e.g. elevated process) and cause a transformation of the (unidimensional) membrane motion into components of displacements in the Müller's organ perpendicular, as well as even parallel, to the membrane.Sites of maximum relative displacements at distinct frequencies are found to be correlated to the course of the dendrites of the acoustic receptor cells. Differences in morphology of the tympanal organ between the two species as well as between adults and larvae always correspond to differences in the mechanical properties (resonances etc.). Consequently, differences or changes in the neurophysiological response characteristics of the different receptor cells have been found.Based upon these findings a correlation between the anatomical and physiological classification of the receptor cell groups is presented.Abbreviations T1, T2, T3, T6, T7 reference points on the tympanal membrane - M1, M4 reference points on the ganglion of the Müller's organ - K1, K2 reference points on the elevated process  相似文献   

12.
Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3–5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.  相似文献   

13.
The parasitoid tachinid fly Homotrixa alleni detects its hosts by their acoustic signals. The tympanal organ of the fly is located at the prothorax and contains scolopidial sensory units of different size and orientation. The tympanal membrane vibrates in the frequency range of approximately 4–35 kHz, which is also reflected in the hearing threshold measured at the neck connective. The auditory organ is not tuned to the peak frequency (5 kHz) of the main host, the bush cricket Sciarasaga quadrata. Auditory afferents project in the three thoracic neuromeres. Most of the ascending interneurons branch in all thoracic neuromeres and terminate in the deutocerebrum of the brain. The interneurons do not differ considerably in frequency tuning, but in their sensitivity with lowest thresholds around 30 dB SPL. Suprathreshold responses of most neurons depend on frequency and intensity, indicating inhibitory influence at higher intensities. Some neurons respond particularly well at low frequency sounds (around 5 kHz) and high intensities (80–90 dB SPL), and thus may be involved in detection of the primary host, S. quadrata. The auditory system of H. alleni contains auditory interneurons reacting in a wide range of temporal patterns from strictly phasic to tonic and with clear differences in frequency responses.  相似文献   

14.
Crickets have two types of mechanisms for the reception of environmental sounds: (1) the tympanal organs in the two forelegs and (2) the freely articulated setal receptors on the abdominal ceri. The cercal setal receptors have hitherto received much less experimental attention as decoders of biologically significant sounds than have the tympano-receptors. In the present study the cercal auditory system of Acheta domesticus was examined electrophysiologically to determine its auditory frequency sensitivity, the tuning characteristics of individual units, and the synchronization between nerve impulses and stimulus frequency. Both pre- and postsynaptic units were examined in the fifth abdominal ganglion; several of the observed response patterns were compared with those of homologous cercal sensory neurons in Periplaneta americana. The results show that (1) A. domesticus possesses an elaborate array of cercal receptors which are highly sensitive to sounds, (2) the cercal setal receptors are more sensitive and numerous in the cricket than in the cockroach, and (3) the cercal auditory system can decode stimulus information by narrow tuning in individual cells and by synchronous discharge patterns; firing frequencies range up to 300 Hz in presynaptic sensory units and 60 Hz in the postsynaptic giants. The response patterns were related to the structure of the receptor and the behavioural adaptations of the insect.  相似文献   

15.
The physiology and morphology of auditory interneurons of a fly, the parasitoid Therobia leonidei, are described for the first time. 1. The hearing threshold has been determined with summed recordings of the neck connective. Females are most sensitive in a frequency range from 16 to 40 kHz (thresholds: around 45 dB SPL). This broad hearing range matches with the peak frequencies of the song spectra of host bushcricket species. Male flies are 10–20 dB less sensitive than females. 2. The sensory cells of the prosternal tympanal organ of T. leonidei project into the thoracico-abdominal ganglion complex with arborizations in all three thoracic neuromeres. 3. Three types of ascending auditory interneurons were identified by their morphology and response properties. These have arborizations in all three thoracic neuromeres and terminate soma-contralaterally in the brain. At least three other neuron types were also identified according to response properties alone. The neurons show similar spectral tuning but different sensitivities.  相似文献   

16.
Middle and inner ear anatomy correlates with neurophysiological responses to a wide range of sound frequencies for species of the Gerbillinae representing generalized, intermediate, and specialized anatomical conditions. Neurophysiological data were recorded from 81 specimens of 13 species representing six genera. Anatomical parameters involved in the process of hearing were correlated with the neurophysiological data to assess the effects of different degrees of anatomical specialization on hearing. The 13 species tested in this manner have graphic curves of auditory sensitivity of remarkably similar disposition over the frequencies tested and to those published for Kangaroo Rats. Ears with anatomical specializations show greater auditory sensitivity. The natural history of the Gerbillinae, particularly the kinds of predators, degree of predation, and habitat is reviewed and utilized to interpret the significance of the degree of auditory specialization in the forms studied and to evaluate the prevailing hypothesis that these specializations enhance the ability of these rodents to survive in open desert situations by detecting and evading predators. The middle ear anatomy of five additional genera and species was also studied. Thus, data on the entire spectrum of gerbilline middle ear morphology provide an evolutionary sequence. Certain anatomical parameters of the organ of Corti show a degree of specialization parallel to that of features of the middle ear. The morphological changes and possible functional roles of these features are considered. A very high correlation exists for degree of specialization and aridity of habitat, thus specialization increases with increasing aridity. This increased specialization may result from more effective predation in open xeric environments. Auditory acuity for a wide range of low frequency sounds augmented by auditory specialization is hence more advantageous here. There does not appear to be selection for hearing at particular frequencies in this range. The peaks of greatest auditory sensitivity appear to correspond to the resonant frequencies of the different components of the middle ear transformer and cavity.  相似文献   

17.
Crickets have two tympanal membranes on the tibiae of each foreleg. Among several field cricket species of the genus Gryllus (Gryllinae), the posterior tympanal membrane (PTM) is significantly larger than the anterior membrane (ATM). Laser Doppler vibrometric measurements have shown that the smaller ATM does not respond as much as the PTM to sound. Hence the PTM has been suggested to be the principal tympanal acoustic input to the auditory organ. In tree crickets (Oecanthinae), the ATM is slightly larger than the PTM. Both membranes are structurally complex, presenting a series of transverse folds on their surface, which are more pronounced on the ATM than on the PTM. The mechanical response of both membranes to acoustic stimulation was investigated using microscanning laser Doppler vibrometry. Only a small portion of the membrane surface deflects in response to sound. Both membranes exhibit similar frequency responses, and move out of phase with each other, producing compressions and rarefactions of the tracheal volume backing the tympanum. Therefore, unlike field crickets, tree crickets may have four instead of two functional tympanal membranes. This is interesting in the context of the outstanding question of the role of spiracular inputs in the auditory system of tree crickets.  相似文献   

18.
Summary The auditory systems of several species of singing and acoustically communicating grasshoppers, as well as of silent grasshoppers, were compared with respect to the external structure of the tympana, thresholds of the tympanal nerve response and projection areas of tympanal nerves within the metathoracic part of the ventral nerve cord. Extracellular recordings from the tympanal nerves, using suction electrodes, revealed that singing and silent grasshoppers hear within the frequency range tested, from 2 to 40 kHz. However, differences in sensitivity were observed in those silent species with tympana of modified structure. Cobalt-backfills of the tympanal nerves revealed a clearly discernible auditory neuropil in the anterior ring tract of the metathoracic ganglion in all animals. A comparison of the volumes of neuropilar areas calculated from serial sections of the entire ganglion showed a gradation: the volumes were biggest in singing species, slightly smaller in silent species with a well-developed tympanum, and smallest in the species with modified tympana. These findings support several authors who suggested that auditory organs evolved earlier than acoustic communication.  相似文献   

19.
The responses of single vibratory receptors and ascending ventral cord interneurones were studied extracellularly in Gryllus campestris L. The physiology of the vibration receptors resembled those found in tettigoniids and locusts. The frequency responses of the subgenual receptors provide two possible cues for central frequency discrimination: differences in mean tuning between groups of receptors in the different leg pairs and a range of receptors tuned to different frequencies within one subgenual organ.Most of the ascending vibratory interneurones were highly sensitive in either the low or high frequency range. Broadbanded neurones were less sensitive. The characteristic sensitivity peaks of these units are due mainly to receptor inputs from a particular leg pair, although most central neurones receive inputs from all 6 legs. Only one neurone type, TN1 received excitatory inputs from both auditory and vibratory receptors; its responses were greatly enhanced by the simultaneous presentation of both stimulus modes. The responses to sound stimuli of AN2, on the other hand, were inhibited by vibration. No other auditory interneurones investigated were influenced by inputs from vibration receptors. Central processing of vibratory information in the cricket is compared with that of tettigoniids and locusts.  相似文献   

20.
Summary The praying mantis, Mantis religiosa, is unique in possessing a single, tympanal auditory organ located in the ventral midline of its body between the metathoracic coxae. The ear is in a deep groove and consists of two tympana facing each other and backed by large air sacs. Neural transduction takes place in a structure at the anterior end of the groove. This tympanal organ contains 32 chordotonal sensilla organized into three groups, two of which are 180° out of line with the one attaching directly to the tympanum. Innervation is provided by Nerve root 7 from the metathoracic ganglion. Cobalt backfills show that the auditory neuropile is a series of finger-like projections terminating ipsilaterally near the midline, primarily near DC III and SMC. The auditory neuropile thus differs from the pattern common to all other insects previously studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号