共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdk specificity is determined by the intrinsic selectivity of the active site and by substrate docking sites on the cyclin subunit. There is a long-standing debate about the relative importance of these factors in the timing of Cdk1 substrate phosphorylation. We analyzed major budding yeast cyclins (the G1/S-cyclin Cln2, S-cyclin Clb5, G2/M-cyclin Clb3, and M-cyclin Clb2) and found that the activity of Cdk1 toward the consensus motif increased gradually in the sequence Cln2-Clb5-Clb3-Clb2, in parallel with cell cycle progression. Further, we identified a docking element that compensates for the weak intrinsic specificity of Cln2 toward G1-specific targets. In addition, Cln2-Cdk1 showed distinct consensus site specificity, suggesting that cyclins do not merely activate Cdk1 but also modulate its active-site specificity. Finally, we identified several Cln2-, Clb3-, and Clb2-specific Cdk1 targets. We propose that robust timing and ordering of cell cycle events depend on gradual changes in the substrate specificity of Cdk1. 相似文献
2.
3.
Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G. 总被引:5,自引:6,他引:5 下载免费PDF全文
J. Kuszewski G. M. Clore A. M. Gronenborn 《Protein science : a publication of the Protein Society》1994,3(11):1945-1952
The folding of the small (56 residues) highly stable B1 immunoglobulin binding domain (GB1) of streptococcal protein G has been investigated by quenched-flow deuterium-hydrogen exchange. This system represents a paradigm for the study of protein folding because it exhibits no complicating features superimposed upon the intrinsic properties of the polypeptide chain. Collapse to a semicompact state exhibiting partial order, reflected in protection factors for ND-NH exchange up to 10-fold higher than that expected for a random coil, occurs within the dead time (< or = 1 ms) of the quenched flow apparatus. This is followed by the formation of the fully native state, as monitored by the fractional proton occupancy of 26 backbone amide groups spread throughout the protein, in a single rapid concerted step with a half-life of 5.2 ms at 5 degrees C. 相似文献
4.
Monolayers of CV-1 cells were synchronized at the G1/S boundary of the cell cycle by a 24-h 2 mM thymidine blockade. Uptake of tritiated thymidine indicated that the peak DNA synthesis occurred 6-8 h after release from the block and that cell cycle time was 18-20 h. The fatty acid composition of phospholipids extracted from cells at 0, 7, and 18 h postblockade was measured by gas chromatography. The results indicate cyclic changes in membrane fatty acids with a significant increase in long-chain polyunsaturated fatty acids during the DNA synthesis phase (S phase) of the cell cycle. 相似文献
5.
6.
Mathieu Weitten Jean-Patrice Robin Hugues Oudart Paul Pévet Caroline Habold 《Hormones and behavior》2013
Animals have to adapt to seasonal variations in food resources and temperature. Hibernation is one of the most efficient means used by animals to cope with harsh winter conditions, wherein survival is achieved through a significant decrease in energy expenditure. The hibernation period is constituted by a succession of torpor bouts (hypometabolism and decrease in body temperature) and periodic arousals (eumetabolism and euthermia). Some species feed during these periodic arousals, and thus show different metabolic adaptations to fat-storing species that fast throughout the hibernation period. Our study aims to define these metabolic adaptations, including hormone (insulin, glucagon, leptin, adiponectin, GLP-1, GiP) and metabolite (glucose, free fatty acids, triglycerides, urea) profiles together with body composition adjustments. Syrian hamsters were exposed to varied photoperiod and temperature conditions mimicking different phases of the hibernation cycle: a long photoperiod at 20 °C (LP20 group), a short photoperiod at 20 °C (SP20 group), and a short photoperiod at 8 °C (SP8). SP8 animals were sampled either at the beginning of a torpor bout (Torpor group) or at the beginning of a periodic arousal (Arousal group). We show that fat store mobilization in hamsters during torpor bouts is associated with decreased circulating levels of glucagon, insulin, leptin, and an increase in adiponectin. Refeeding during periodic arousals results in a decreased free fatty acid plasma concentration and an increase in glycemia and plasma incretin concentrations. Reduced incretin and increased adiponectin levels are therefore in accordance with the changes in nutrient availability and feeding behavior observed during the hibernation cycle of Syrian hamsters. 相似文献
7.
B Riis S I Rattan J Cavallius B F Clark 《Biochemical and biophysical research communications》1989,159(3):1141-1146
The amount of protein elongation factor EF-2 that can be inactivated by diphtheria toxin-mediated ADP-ribosylation, a measure of its active content, decreases by 45% and 66% in G1-arrested normal human fibroblasts and in HeLa cells respectively. On restimulation of cells with fresh serum, the amounts of ADP-ribosylatable EF-2 begin to increase within 4 h. Whereas the level of active EF-2 returns to normal (exponential phase of growth) in 20 h in the case of fibroblasts, only 47% recovery was observed for HeLa cells during this period. The apparent long half-lives of EF-2 mRNA and protein indicate possibilities of posttranslational ADP-ribosylation and de-ADP-ribosylation as the regulators of the amounts of active EF-2 during human cell cycle. 相似文献
8.
Ohta S Tatsumi Y Fujita M Tsurimoto T Obuse C 《The Journal of biological chemistry》2003,278(42):41535-41540
The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei. 相似文献
9.
10.
In order to examine the effect of a metal binding to the polypeptide chain on the aggregation of a protein in the refolding process, we prepared a mutant hen lysozyme possessing the same Ca(2+) binding site as in human alpha-lactalbumin by Escherichia coli expression system (Ser(-1) CaB lysozyme). In the presence of 2 mM CaCl(2), the refolding yield of Ser(-1) CaB lysozyme at a low protein concentration (25 microg/mL) was similar to that of the wild-type lysozyme (80%), but that at high protein concentration (200 microg/mL) decreased (15%) due to aggregation comparing to that of the wild-type lysozyme (45%). However, the refolding yield of Ser(-1) CaB lysozyme in the presence of 100 mM CaCl(2) even at a protein concentration of 200 microg/mL was 80% and was higher than that of the wild-type lysozyme. From analysis of chemical shift changes of the cross peaks in the backbone region of total correlated spectroscopy (TOCSY) spectra of a decapeptide possessing the same calcium binding site as in Ser(-1) CaB lysozyme in the presence of various concentrations of Ca(2+), it was suggested that the dissociation constant of Ca(2+)-peptide complex was estimated to be 20-36 mM. Moreover, the solubility of the denatured Ser(-1) CaB lysozyme in the presence of 100 mM CaCl(2) was higher than that in the presence of 2 mM CaCl(2) whereas the solubility of the denatured Ser(-1) lysozyme in the presence of 100 mM CaCl(2) was not higher than that in the presence of 2 mM CaCl(2). Therefore, it was concluded that the reduced lysozyme possessing the Ca(2+) binding site was efficiently folded in the presence of high concentration of Ca(2+) (100 mM) even at high protein concentration due to depression of aggregation by the binding of Ca(2+) to the polypeptide chain in Ser(-1) CaB lysozyme. 相似文献
11.
Choi SK Adachi M Yoshikawa M Maruyama N Utsumi S 《Bioscience, biotechnology, and biochemistry》2004,68(9):1991-1994
Soybean (Glycine max L.) glycinin is composed of five subunits which are classified into two groups (group I: A1aB1b, A1bB2, and A2B1a; group II: A3B4 and A5A4B3). All the common soybean cultivars contain both group I and II subunits (Maruyama, N. et al., Phytochemistry, 64, 701-708 (2003)). The biosynthesis of group I starts earlier compared with that of the A3B4 subunit during seed development (Meinke, D.W. et al., Planta, 153, 130-139 (1981)). We have revealed that group I A1aB1b was mostly expressed as a soluble protein, but that A3B4 was expressed mainly as an insoluble protein in Escherichia coli under the same expression conditions; namely, A1aB1b had higher folding ability than A3B4. We therefore assumed that A1aB1b assists folding of group II subunits like a molecular chaperone does. In order to ascertain this, A1aB1b and A3B4 were co-expressed in E. coli. All of the expressed proteins of A3B4 were recovered in a soluble fraction. To confirm this result, we also co-expressed A1aB1b with modified A3B4 versions having extremely low folding ability. All expressed modified A3B4 versions were soluble. These results clearly suggest that A1aB1b has a molecular chaperone-like function in their folding. 相似文献
12.
Anna Maria Bolognani Fantin Antonella Franchini Roberta Malgara Barbara Rebecchi Anna Maria Fuhrman Conti 《Biology of the cell / under the auspices of the European Cell Biology Organization》1998,90(2):155-159
The changes in the expression of glycoconjugates and adhesion molecules were studied by selective lectin binding and immunocytochemical reactions in a human embryonic epithelial cell line (EUE cells), synchronized in the cell cycle phases. The results can be summarized as follows: most of the tested lectins display a more diffuse binding for the cytoplasm in G1 than S and G2 phases; in the S and particularly in G2 phases the cytoplasm glycoconjugates are rearranged around the nucleus; cells in mitosis always show a strong binding towards all tested lectins. Cellular fibronectin and its receptor β1 integrin are well expressed in G1, but the strongest reaction is observed in the S phase. The immunoreactions for laminin and uvomorulin (L-CAM) are poorly positive in all cell cycle phases. The immunocytochemical reaction for heparan sulfate is positive, with a stronger reaction in S and G2 than in G1; on the contrary a diffuse staining with the anti-dermatan sulfate proteoglycan antibody appears unchanged during the cell cycle. 相似文献
13.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle. 相似文献
14.
Periodic biosynthesis of the human M-phase promoting factor catalytic subunit p34 during the cell cycle. 总被引:14,自引:3,他引:11 下载免费PDF全文
The product of the CDC2Hs gene is the protein kinase subunit of the M-phase promoting factor, which is required for entry into mitosis. The activity of this kinase is regulated in a cell cycle-dependent manner by reversible phosphorylation and through association with other proteins. We report here that in HeLa cells, the abundance of the CDC2Hs mRNA and the rate of synthesis of the encoded protein, p34, vary in a cell cycle-dependent manner. 相似文献
15.
The proteasome is involved in the progression of the meiotic cell cycle in fish oocytes. We reported that the alpha4 subunit of the 26S proteasome, which is a component of the outer rings of the 20S proteasome, is phosphorylated in immature oocytes and dephosphorylated in mature oocytes. To investigate the role of the phosphorylation, we purified the protein kinase from immature oocytes using a recombinant alpha4 subunit as substrate. A protein band which well corresponded to the kinase activity was identified as casein kinase Ialpha (CKIalpha). Two-dimensional (2D) PAGE analysis showed that part of the alpha4 subunit was phosphorylated by CKIalpha in vitro. This spot was detected in purified immature 26S proteasome but not in mature 26S proteasome, demonstrate that the alpha4 subunit is phosphorylated by CKIalpha meiotic cell cycle dependently. 相似文献
16.
Erkmann JA Wagner EJ Dong J Zhang Y Kutay U Marzluff WF 《Molecular biology of the cell》2005,16(6):2960-2971
A key factor involved in the processing of histone pre-mRNAs in the nucleus and translation of mature histone mRNAs in the cytoplasm is the stem-loop binding protein (SLBP). In this work, we have investigated SLBP nuclear transport and subcellular localization during the cell cycle. SLBP is predominantly nuclear under steady-state conditions and localizes to the cytoplasm during S phase when histone mRNAs accumulate. Consistently, SLBP mutants that are defective in histone mRNA binding remain nuclear. As assayed in heterokaryons, export of SLBP from the nucleus is dependent on histone mRNA binding, demonstrating that SLBP on its own does not possess any nuclear export signals. We find that SLBP interacts with the import receptors Impalpha/Impbeta and Transportin-SR2. Moreover, complexes formed between SLBP and the two import receptors are disrupted by RanGTP. We have further shown that SLBP is imported by both receptors in vitro. Three sequences in SLBP required for Impalpha/Impbeta binding were identified. Simultaneous mutation of all three sequences was necessary to abolish SLBP nuclear localization in vivo. In contrast, we were unable to identify an in vivo role for Transportin-SR2 in SLBP nuclear localization. Thus, only the Impalpha/Impbeta pathway contributes to SLBP nuclear import in HeLa cells. 相似文献
17.
18.
M Sugimoto H Matsui S Etoh T Shimizu H Nishio L J Moia M Tokuda T Itano I Takenaka O Hatase 《Biochemical and biophysical research communications》1991,180(3):1476-1482
We have cloned and sequenced rat testis cDNAs coding for a calcium binding polypeptide similar to calcineurin beta subunit, the Ca(2+)-binding subunit of the Ca2+/calmodulin stimulated protein phosphatase. Rat testis cDNA library was screened with a monoclonal antibody Va1 raised against bovine brain calcineurin beta subunit. The deduced amino acid sequence is similar to that of human brain calcineurin beta subunit with respect to containing four putative calcium binding sites. However, distinct differences were found: 1) The cloned cDNA had six amino acids polypeptide tail at carboxy-terminal which is absent in human brain calcineurin beta subunit. This amino acids tail makes the carboxy-terminal highly hydrophilic in contrast to the human brain beta subunit which is hydrophobic at carboxy-terminal; 2) eleven amino acids at the N terminal of the cloned cDNA were completely different from the corresponding region of the brain calcineurin beta subunit. 相似文献
19.
20.
The fine structure of the nuclei of synchronously growing cell population of Amoeba proteus was studied at I-h intervals during the interphase. This study showed that the nuclear helices undergo increases in their number at certain stages during interphase. These changes were found to correlate with ultrastructural changes occurring in the nucleoli. 相似文献