首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
LacI mutants obtained following 2 and 6 h of thymine deprivation were cloned and sequenced. The mutational spectra recovered were dissimilar. After 2 h of starvation the majority of mutations were base substitutions, largely G: C→C: G transversions. Frameshift mutations but not deletions were observed. In contrast, following 6 h of starvation, with the exception of the G: C→C: G transversion, all possible base substitutions were recovered. Moreover, several deletions but no frameshift events were observed. The differences in the mutational spectra recovered after two periods of thymine deprivation highlight the role of altered nucleotide pools and the potential influence of DNA replication mechanisms.  相似文献   

3.
[目的]为了实现对大肠杆菌靶基因的点突变,本研究将同源重组系统与CRISPR-Cas9技术相结合,探索一种高效、简捷的两步法策略.[方法]将靶基因的上下游同源臂和标记基因(amp)与pKOV质粒连接,获得pKOV-HR重组质粒.将pKOV-HR转化至大肠杆菌,借助其自身RecA重组系统,介导DNA发生同源重组,获得靶基...  相似文献   

4.
Summary An Escherichia coli strain deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity has previously been isolated, and the gene (plsC) has been shown to map near min 65 on the chromosome. I precisely mapped the location of plsC on the chromosome, and determined its DNA sequence. plsC is located between parC and sufI, and is separated from sufI by 74 bp. Upstream of plsC is parC, separated by 233 bp, which includes an active promoter. parC, plsC, and sufI are all transcribed in the counterclockwise direction on the chromosome, possibly in an operon with multiple promoters. The amino-terminal sequence of the partially purified protein, combined with the DNA sequence, reveal 1-acyl-sn-glycerol-3-phosphate acyltransferase to be a 27.5 kDa highly basic protein. The plsC gene product, 1-acyl-sn-glycerol-3-phosphate acyltransferase, is localized to the cytoplasmic membrane of the cell. The amino-terminal sequence of the purified protein reveals the first amino acid to be a blocked methionine residue, most probably a formyl-methionine. The amino acid sequence of 1-acyl-sn-glycerol-3-phosphate acyltransferase has a short region of homology to two other E. coli acyltransferases that utilize acyl-acyl carrier protein as the acyl donor, sn-glycerol-3-phosphate acyltransferase and UDP-N-acetyl-glucosamine acyltransferase (involved in lipid A biosynthesis).  相似文献   

5.
Summary The Escherichia coli HU-2 gene was cloned using a DNA fragment from the HU-1 gene as a probe. The amino acid sequence of the HU-2 protein deduced from the nucleotide sequence is in good agreement with the published sequence. The nucleotide sequence has a possible promoter and a typical ribosomal binding site upstream of the translation initiation codon (AUG) and a possible rhoindependent terminater site downstream of the termination codon (UAA) of the gene.  相似文献   

6.
An Escherichia coli membrane protein, FtsH, has been implicated in several cellular processes, including integration of membrane proteins, translocation of secreted proteins, and degradation of some unstable proteins. However, how it takes part in such diverse cellular events is largely unknown. We previously isolated dominant negative ftsH mutations and proposed that FtsH functions in association with some other cellular factor(s). To test this proposal we isolated multicopy suppressors of dominant negative ftsH mutations. One of the multicopy suppressor clones contained an N-terminally truncated version of a new gene that was designated fdrA. The FdrA fragment suppressed both of the phenotypes — increased abnormal translocation of a normally cytoplasmic domain of a model membrane protein and retardation of protein export — caused by dominant negative FtsH proteins. The intact fdrA gene (11.9 min on the chromosome) directed the synthesis of a 60 kDa protein in vitro.  相似文献   

7.
Summary Two new mutants of E. coli K12, strains PT9 and PT32 were isolated, that were defective in proline transport. They had no high affinity proline transport activity, but their cytoplasmic membranes retained proline binding activity with altered sensitivity to inhibition by p-chloromercuribenzoate(pCMB). The lesion was mapped at the putP gene, which is located at min 23 on the revised E. coli genetic map (Bachmann 1983) as a composite gene in the proline utilization gene cluster, putP, putC, and putA, arranged in this order. The putC gene was shown to regulate the synthesis of proline dehydrogenase (putA gene product).Hybrid plasmids carrying the put region (Motojima et al. 1979; Wood et al. 1979) were used to construct the physical map of the put region. The possible location of the putP gene in the DNA segment was determined by subcloning the putP gene, genetic complementation, and recombination analyses using several proline transport mutants.Abbreviations pCMB p-chloromercuribenzoate - DM Davis and Mingioli - Ap ampicillin - NTG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate - Str streptomycin - Tet tetracycline - Ac l-azetidine-2-carboxylic acid - DHP 3, 4-dehydro-d,l-proline - MTT 3-(4,5-dimethyl-2)2,5-diphenyl tetrazolium bromide - Tris tris(hydroxymethyl)aminomethane - EDTA ethylenediamine tetraacetic acid - Kan kanamycin - Spc spectinomycin  相似文献   

8.
9.
10.
We used anEscherichia coli strain blocked in serine biosynthesis and carrying a partialglyA deletion to isolate strains with altered regulation of theglyA gene. TheglyA deletion results in 25% of the normal serine hydroxymethyltransferase activity. Three classes of mutants with increasedglyA expression were isolated on glycine supplemented plates. One class of mutations increasedglyA expression 10-fold by directly altering the – 35 consensus sequence of theglyA promoter. The two other classes increasedglyA expression about 2- and 6-fold, respectively. The latter two classes of mutations also affected regulation of themetE gene of the folate branch of the methionine pathway, but notmetA in the nonfolate branch of the methionine pathway, or thegcv operon, encoding the glycine cleavage enzyme system. The mutations were mapped to about minute 85.5 on theE. coli chromosome.  相似文献   

11.
大肠埃希菌(Escherichia coli)是一种兼性厌氧、有鞭毛的革兰氏阴性短杆菌,常寄生于人和动物肠道内,是常见的人畜共患病病原之一。大肠埃希菌易形成生物被膜,这是一种由细菌群落分泌能够包裹自身的胞外基质与细菌结合形成的特殊聚集体,也是临床细菌感染疾病难以治愈的主要原因。生物被膜的形成不仅帮助细菌逃避宿主的防御系统,还可以降低或阻止药物发挥作用,从而诱发生物被膜相关感染(biofilm-associated infections, BAI)。本文从生物被膜形成的基因调控系统和相关调控蛋白等角度,归纳总结调控大肠埃希菌生物被膜形成的分子机制,并对防治BAI的策略进行了概述,为寻找合适的药物靶点以及防治BAI提供参考。  相似文献   

12.
Summary A broad host range plasmid containing an operon fusion between the recA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria — 30 species belonging to 20 different genera — to study the expression of the recA gene after DNA damage. These included species of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae and Azotobacteraceae. Results obtained show that all bacteria tested, except Xanthomonas campestris and those of the genus Rhodobacter, are able to repress and induce the recA gene of E. coli in the absence and in the presence of DNA damage, respectively. All these data indicate that the SOS system is present in bacterial species of several families and that the LexA-binding site must be very conserved in them.  相似文献   

13.
14.
The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS50R. We were not able to reproduce this result with IS50R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS50R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.  相似文献   

15.
[背景] 过氧化氢酶(catalase,CAT)参与真菌的生长发育,逆境胁迫时保护真菌免受氧化损伤。[目的] 实现草菇过氧化氢酶基因(VvCAT1)的异源表达,分析VvCAT1耐温度胁迫的功能。[方法] 克隆VvCAT1,构建过表达载体pBAR GPE1/VvCAT1,转化到大肠杆菌(Escherichia coli)菌株Stbl3中,异源表达草菇过氧化氢酶。测定温度胁迫后重组菌(pBAR GPE1/VvCAT1/Stbl3)与对照菌(pBAR GPE1/Stbl3)的过氧化氢酶活性和生长情况,验证VvCAT1的功能。[结果] 重组菌的CAT酶活性显著提高,生长情况显著优于对照菌。[结论] VvCAT1的导入及表达显著提高了大肠杆菌Stbl3的耐温度胁迫功能。  相似文献   

16.
Summary We report the physical and genetic mapping of pheV, an Escherichia coli gene for phenylalanine tRNA, to 64 min on the chromosomal map in the near vicinity of speC coding for ornithine decarboxylase.  相似文献   

17.
Summary The pstS gene belongs to the phosphate regulon whose expression is induced by phosphate starvation and regulated positively by the PhoB protein. The phosphate (pho) box is a consensus sequence shared by the regulatory regions of the genes in the pho regulon. We constructed two series of deletion mutations in a plasmid in vitro, with upstream and downstream deletions in the promoter region of pstS, which contains two pho boxes in tandem, and studied their promoter activity by connecting them with a promoterless gene for chloramphenicol acetyltransferase. Deletions extending into the upstream pho box but retaining the downstream pho box greatly reduced promoter activity, but the remaining activity was still regulated by phosphate levels in the medium and by the PhoB protein, indicating that each pho box is functional. No activity was observed in deletion mutants which lacked the remaining pho box or the-10 region. Therefore, the pstS promoter was defined to include the two pho boxes and the-10 region. The PhoB protein binding region in the pstS regulatory region was studied with the deletion plasmids by a gelmobility retardation assay. The results suggest the protein binds to each pho box on the pstS promoter. A phoB deletion mutant was constructed, and we demonstrated that expression of pstS was strictly dependent on the function of the PhoB protein.  相似文献   

18.
【目的】在大肠杆菌中完整重构孢子色素whiE的生物合成途径,分离纯化表达体系中合成的新化合物,并解析whiE的生物合成途径。【方法】构建whiE-ORFII、whiE-ORFVII和whiE-ORFI的单基因重组质粒,SDS-PAGE检测蛋白表达情况;借助Xba I与Spe I互为同尾酶的特性,实现多基因组合串联;构建好的重组质粒再导入大肠杆菌菌株BAP1中进行异源表达,并用高效液相色谱(HPLC)检测发酵产物;依次使用正相硅胶柱和反向半制备柱分离发酵产物,四级杆飞行时间质谱仪(Q-TOFMS)鉴定发酵产物分子量。【结果】whiE-ORFII、whiE-ORFVII和whiE-ORFI均获得可溶性表达;这3个基因单个串联到菌株BTw95中均未检测到新的产物生成;而whiE-ORFII和whiE-ORFVII、 whiE-ORFI和whiE-ORFVII双基因组合以及三基因组合串联到BTw95中可检测得到两种化合物ZYC-1和ZYC-2。在负离子模式下进行Q-TOFMS检测,ZYC-1的[M-H]-为419.0748,推测分子式为C_(23)H_(16)O_8;ZYC-2的[M-H]-为465.0743,推测分子式为C_(24)H_(18)O_(10)。【结论】本研究推进了孢子色素whiE生物合成途径在大肠杆菌中的异源重构,分离鉴定了2个十二酮II型聚酮化合物,并推测了孢子色素whiE的生物合成途径。  相似文献   

19.
We report here the first cloning of a chalcone flavonone isomerase gene (CHI) from maize. Northern blot experiments indicate that the maize CHI gene (ZmCHI1) is regulated in the pericarp by the P gene, a myb homologue. The ZmCHI1 gene encodes a 24.3 kDa product 55% and 58% identical to CHI-A and CHI-B from Petunia, respectively. This maize CHI gene has four exons and an intron-exon structure identical to the CHI-B gene of Petunia hybrida. RFLP mapping data indicate that some inbred lines contain two additional CHI-homologous sequences, suggesting an organization more complex than that found in Petunia or bean. The possibility that the additional CHI-homologous sequences are responsible for the lack of CHI mutants in maize will be discussed.  相似文献   

20.
Summary In this report we present genetic and biochemical evidence indicating that the aidD6: : Mu dl (bla lac) fusion is an insertion of Mu dl (bla lac) into the alkB coding sequence. We describe the phenotypic effects resulting from this mutation and compare them with the effects of alkB22, alkA and ada mutations. We also constructed an alkA alkB double mutant and compared its phenotype with that of the single mutant strains. The observation that the methyl methanesulfonate (MMS) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) resistance of the double mutant is approximately at the level predicted from the additive sensitivity of each of the single mutants suggests that these two gene products act in different pathways of DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号