首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wheat (Triticum aestivum L.) genotypes K-65 (salt tolerant) and HD 2329 (salt sensitive) were grown in pots under natural conditions and irrigated with NaCl solutions of electrical conductivity (ECe) 4.0, 6.0, and 8.0 dS m−1. Control plants were irrigated without saline water. Observations were made on the top most fully expanded leaf at tillering, anthesis, and grain filling stages. The net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) were reduced with the addition of NaCl. The reduction was higher in HD 2329 than in K-65. Salinity enhanced leaf to air temperature gradient (ΔT) in both the genotypes. NaCl increased the activities of superoxide dismutase (SOD) and peroxidase (POX); the percent increment was higher in K-65. The sodium and potassium contents were higher in the roots and leaves of K-65 over HD 2329. Thus at cellular level K-65 has imparted salt tolerance by manipulating P N, E, g s, and K accumulation in leaves along with overproduction of antioxidative enzyme activities (SOD and POX).  相似文献   

2.
Responses of wheat (Triticum aestivum L.) to various concentrations of NaCl and levels of drought were followed. With the rise of NaCl or drought, or NaCl and drought together, growth was retarded. The water content of shoots and roots was mostly unchanged. The chlorophyll and carotenoid contents were increased in plants subjected to salinity or drought or both. Only high salinity level induced a considerable decrease in net photosynthetic rate (PN) and dark respiration rate (RD). PN and RD were decreased with the decrease of soil moisture content. The content of Na+ in the shoots and roots of wheat plants increased with increasing salinity or decreasing soil moisture content or both treatments. Considerable variations in the content of K+, Ca2+ or Mg2+ were induced by the NaCl, drought or both treatments.  相似文献   

3.
The effect of sodium chloride and triadimefon (TDM) on the chlorophyll (Chl) content, net photosynthetic rates (PN), rate of transpiration (E), and intercellular CO2 concentration (Ci) in Raphanus sativus was studied. The effect of NaCl salinity was partially ameliorated by TDM which caused increase in Chl content, PN, and Ci. TDM also increased root dry matter production, decreased E, and increased the water use efficiency. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Kao  Wen-Yuan  Tsai  Hung-Chieh 《Photosynthetica》1999,37(3):405-412
Kandelia candel (L.) Druce is the dominant mangrove species on the west coast of northern Taiwan. We have measured the net photosynthetic rate (P N) and chlorophyll (Chl) a fluorescence of seedlings grown at combinations of two nitrogen (0.01 and 0.1 mM) and two NaCl (250 and 430 mM NaCl) controls. With the same nitrogen level, seedlings grown at higher salinity (HS) had a significantly lower P N and stomatal conductance (g s) than those at lower salinity (LS). An increase in nitrogen availability significantly elevated P N and g s of the LS-grown seedlings. Compared to dark adapted leaves, the maximum quantum yield of photosystem 2 (PS2) (Fv/Fm) of leaves exposed to PFDs of 1200 and 1600 μmol m-2 s-1 for 2 h was significantly reduced. The degree of Fv/Fm reduction differed among leaves of the four types of treated plants. Chl fluorescence quenching analysis revealed differences among the examined plants in coefficients of non-photochemical and photochemical quenching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Wang  R.Z.  Yuan  Y.Q. 《Photosynthetica》2001,39(2):283-287
The intra- and inter-specific variations in net photosynthetic (P N) and transpiration (E) rates and water use efficiency (WUE) of Puccinellia tenuiflora and Puccinellia chinampoensis leaves were compared. The two species experienced a similar habitat, but differed in leaf area, leaf colour, and nitrogen contents. Leaf P N and E for both reproductive and vegetative shoots of the two species declined with leaf age. P N for reproductive shoots was less than for vegetative shoots, but their E was greater than that of vegetative shoots in the dry season. The average P N and E for reproductive shoots of P. tenuiflora were lower than those of P. chinampoensis, but higher for vegetative shoots.  相似文献   

6.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   

7.
Mediavilla  S.  Santiago  H.  Escudero  A. 《Photosynthetica》2002,40(4):553-559
In the evergreen Quercus rotundifolia and the co-existing deciduous Q. faginea we studied the diurnal variations in photosynthetic capacity (P max), measured as the rate of O2 evolution at photon and CO2 saturation, and in the rate of net CO2 assimilation (P N) in the field during the period of maximum photosynthetic activity. Our aim was to check the contribution of stomatal and non-stomatal limitations to the diurnal variation in photosynthesis, and to study the differences between both species. Q. faginea leaves displayed lower mass per unit area and higher nitrogen content than Q. rotundifolia leaves. The maximum stomatal conductance and P N in the field were higher in Q. faginea than in Q rotundifolia. Also P max of Q. faginea was higher than that of Q. rotundifolia. Both species attained in the field a high percentage of the P max (around 82 % for Q. faginea and 73 % for Q. rotundifolia). This indicates reduced stomatal limitation of photosynthesis under favourable conditions, especially in Q. faginea. P N underwent a sharp decrease towards mid-day in association with increase in the atmospheric vapour pressure deficit and decrease in the leaf water potential. P max was also reduced during mid-day. This demonstrated the contribution of mesophyll limitations to the P N in the two species under stress. The mesophyll limitation of photosynthesis seemed to be similar for both species, independently from the differences in leaf traits between them.  相似文献   

8.
This study establishes relationships between salt resistance and solute accumulation in roots and leaves of two contrasting cashew species. The sensitive (Anacardium microcarpum) and resistant (A. occidentale) species showed maximum root LD50 values (the external NaCl concentration required for a 50% reduction in dry weight) of 63 and 128?mM NaCl, whereas the shoot LD50 values were 90 and 132?mM, respectively. The salt sensitivity was directly associated with Na+ accumulation and especially with the Cl? content in leaves and to a minor extent in roots. The accumulation of saline ions was associated with higher net uptake rates by roots and transport rates from root to shoot in the sensitive cashew species. The K+/Na+ ratios were not associated with salt resistance either in roots or leaves. Proline and free amino acid concentrations were strongly increased by salinity, especially in the leaves of the resistant species. The soluble sugar concentrations were not influenced by NaCl treatments in leaves of both species. In contrast, the root soluble sugar content was significantly decreased by salinity in the sensitive species only. In conclusion, the higher salt sensitivity of A. microcarpum is associated to an inefficient salt exclusion system of the leaves, especially for Cl?. On the other hand, the resistant species displays higher concentrations of organic solutes especially a salt-induced accumulation of proline and free amino acids in leaves.  相似文献   

9.
The accumulation of conjugated and free polyamines in plants is very important for their protection against oxidative stress induced by abiotic factors. In the present study, the species halophytic plant Mesembryanthemum crystallinum L. was used as a model system in which the process of Crassulacean Acid Metabolism induction is linked with oxidative stress, especially under salinity conditions. A comparative analysis of the content of free polyamines, perchloric (PCA)-soluble and PCA-insoluble conjugated polyamines in mature leaves and roots was carried out with plants exposed to salinity. It was found that adult leaves and roots under normal conditions or salinity (400 mM NaCl) contained all types of free polyamines (putrescine, spermidine, spermine, and cadaverine). In leaves only PCA-insoluble conjugates were found, which showed a tendency to grow with increased duration of salt action (1.5–48 h). In contrast to leaves, in roots all forms of polyamine conjugates (PCA-soluble and -insoluble) were detected. However, the formation of all conjugates, especially PCA-soluble forms in roots, was sharply inhibited by salt shock (400 mM NaCl, 1.5 h) or exogenous cadaverine (1 mM) treatment. PCA-soluble conjugates of cadaverine in roots were found only when the treatment was carried out in combination with aminoguanidine (1 mM), as a result of diamine oxidase inhibition and consequently a decreasing of H2O2 production in plant cells. The activation of diamine oxidase and guaiacol peroxidase by NaCl or exogenous cadaverine was observed in leaves and roots. Thus, the activation of oxidative degradation of polyamines combined with H2O2–peroxidase reaction in cells are involved in the regulation of free and conjugated polyamines titers under salinity.  相似文献   

10.
The accumulation of conjugated and free polyamines in plants is very important for their protection against oxidative stress induced by abiotic factors. In the present study, the species halophytic plant Mesembryanthemum crystallinum L. was used as a model system in which the process of Crassulacean Acid Metabolism induction is linked with oxidative stress, especially under salinity conditions. A comparative analysis of the content of free polyamines, perchloric (PCA)-soluble and PCA-insoluble conjugated polyamines in mature leaves and roots was carried out with plants exposed to salinity. It was found that adult leaves and roots under normal conditions or salinity (400 mM NaCl) contained all types of free polyamines (putrescine, spermidine, spermine, and cadaverine). In leaves only PCA-insoluble conjugates were found, which showed a tendency to grow with increased duration of salt action (1.5–48 h). In contrast to leaves, in roots all forms of polyamine conjugates (PCA-soluble and -insoluble) were detected. However, the formation of all conjugates, especially PCA-soluble forms in roots, was sharply inhibited by salt shock (400 mM NaCl, 1.5 h) or exogenous cadaverine (1 mM) treatment. PCA-soluble conjugates of cadaverine in roots were found only when the treatment was carried out in combination with aminoguanidine (1 mM), as a result of diamine oxidase inhibition and consequently a decreasing of H2O2 production in plant cells. The activation of diamine oxidase and guaiacol peroxidase by NaCl or exogenous cadaverine was observed in leaves and roots. Thus, the activation of oxidative degradation of polyamines combined with H2O2–peroxidase reaction in cells are involved in the regulation of free and conjugated polyamines titers under salinity.  相似文献   

11.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2003,41(3):399-405
A field experiment was conducted to investigate the carbon (C) and nitrogen (N) balance in relation to grain formation and leaf senescence in two different senescent types of maize (Zea mays L.), one stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55). In comparison with Hokkou 55, P3845 had a higher N concentration (Nc) in the leaves and a higher specific N absorption rate by roots (SARN), which indicated that a large amount of N was supplied to the leaves from the roots during maturation. This resulted in a higher photosynthetic rate, which supports saccharide distribution to roots. Thus, stay-green plants maintained a more balanced C and N metabolism between shoots and roots. Moreover, the coefficients of the relationship between the relative growth rate (RGR) and Nc, and between the photon-saturated photo-synthetic rate (P sat) and Nc were lower in P3845. The P sat per unit Nc in leaves was lower in the stay-green cultivars, which indicated that high yield was attained by longer green area duration and not by a high P sat per unit Nc in the leaf. Consequently, a high Psat caused a high leaf senescence rate because C and N compounds will translocate actively from the leaves.  相似文献   

12.
The effect of sodium chloride and triadimefon (TDM) on the chlorophyll (Chl) content, net photosynthetic rates (PN), rate of transpiration (E), and intercellular CO2 concentration (Ci) in Raphanus sativus was studied. The effect of NaCl salinity was partially ameliorated by TDM which caused increase in Chl content, PN, and Ci. TDM also increased root dry matter production, decreased E, and increased the water use efficiency.  相似文献   

13.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

14.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

15.
Net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) declined from upper leaves to the lower ones during dry and rainy seasons, indicating that long-term carbon budget should take into account P N variations for different leaf types. Relatively greater P N in the dry season suggested that this species is more able to maintain higher P N under drought, but the relatively higher E in the dry season might reduce water use efficiency (P N/E) for the species. Significant correlations between P N and g s indicated that g s may be the critical factor for P N variability in the desert region.  相似文献   

16.
This study compared the effects of salt (NaCl) stress on growth, photosynthesis and solute accumulation in seedlings of the three poplar (Populus bonatii) cultivars Populus × BaiLin-2 (BL-2), Populus × BaiLin-3 (BL-3), and Populus × Xjiajiali (XJJL). The results showed that BL-2 and BL-3 could not survive at a salinity level of 200 mM but XJJL grew well. The effect of moderate salt stress on leaf extension of the three cultivars was only slight. At a high level of salinity, however, NaCl clearly inhibited leaf extension of BL-2 and BL-3, whereas it did not affect that of XJJL, and the net photosynthetic rate (P N) in XJJL was much higher than those of BL-2 and BL-3. The lower P N of BL-2 and BL-3 might be associated with the high concentration of Na+ and/or Cl accumulated in the leaves, which could be toxic in photosynthesis system. In summary, the greater salt-tolerance of XJJL compared with that of BL-2 and BL-3 might be explained by the higher P N and photosynthetic area, the lower Na+/K ratio and Cl in the leaf, and the greater accumulation of soluble sugars and SO4 2−.  相似文献   

17.
Under constant salinity we analysed the leaf characteristics of Laguncularia racemosa (L.) Gaertn. in combination with gas exchange and carbon isotopic composition to estimate leaf water-use efficiency (WUE) and potential nitrogen-use efficiency (NUE). NaCl was not added to the control plants and the others were maintained at salinities of 15 and 30 ‰ (S0, S15, and S30, respectively). Leaf succulence, sodium (Na), nitrogen (N), and chlorophyll (Chl) contents increased under salinity. Salinity had a negative impact on net photosynthetic rate (P N) and stomatal conductance (g s) at high and moderated irradiances. Potential NUE declined significantly (p<0.05) with salinity by 37 and 58 % at S15 and S30, respectively, compared to S0 plants. Conversely, compared to S0 plants, P N/g s increased under saline conditions by 12 % (S15) and 50 % (S30). Thus, WUE inferred from P N/g s was consistent with salinity improved short-term WUE. Long-term leaf WUE was also enhanced by salinity as suggested by significantly increased leaf δ13C with salinity. Improved WUE under salinity explains the eco-physiological success of mangrove species under increasing salinity. Conversely, decline in NUE may pose a problem for L. racemosa under hyper-saline environments regardless of N availability.  相似文献   

18.
An experiment was conducted to study the effect of NaCl (electric conductivity of 0, 4, 8, 12, and 16 dS m?1) on growth, gas exchange parameters, water status, membrane injury, chlorophyll stability index and oxidative defense mechanisms in two cultivars (Gola and Umran) of Indian jujube (Ziziphus mauritiana). Results showed that the dry mass and leaf area reduced linearly with increasing levels of salinity. Net photosynthetic rate (P N), transpiration (E), and stomatal conductance (g s) were comparatively lower in Umran which further declined with salinity. Leaf relative water content, chlorophyll (Chl) stability and membrane stability also decreased significantly under salt stress, with higher magnitude in Umran. Superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) activities were higher in Gola whereas hydrogen peroxide (H2O2) accumulation and lipid peroxidation (MDA content) were higher in control as well as salttreated plants of Umran. The Na+ content was higher in the roots of Gola and in the leaves of Umran, resulting in high K+/Na+ ratio in Gola leaves. Thus it is suggested that salt tolerance mechanism is more efficiently operative in cultivar Gola owing to better management of growth, physiological attributes, antioxidative defense mechanism, and restricted translocation of Na+ from root to leaves along with larger accumulation of K+ in its leaves.  相似文献   

19.
Muranaka  S.  Shimizu  K.  Kato  M. 《Photosynthetica》2002,40(2):201-207
The effects of iso-osmotic salinity and drought stresses on leaf net photosynthetic rate (P N) in two wheat (Triticum aestivum L.) cultivars BR 8 and Norin 61, differing in drought tolerance, were compared. In drought-sensitive Norin 61, the decline of P N was larger than that in drought-tolerant BR 8. Under NaCl treatment, P N decreased in two phases similarly in both cultivars. In the first phase, photosynthetic depression was gradual without any photochemical changes. In the second phase, photosynthetic depression was rapid and accompanied with a decline of the energy conversion efficiency in photosystem 2 (PS2). Our observations suggest that the osmotic factor may induce a gradual depression of photosynthesis due to stomatal closure under both stress treatments. However, under NaCl treatment, a ionic factor (uptake and accumulation of excess Na+) may have direct effects on electron transport and cause more severe photosynthetic depression. The drought tolerance mechanism of BR 8 was insufficient to maintain single-leaf photosynthesis under salinity.  相似文献   

20.
The inter-and intra-specific physiological differences, e.g. rates of net photosynthesis (P N) and transpiration (E), stomatal conductance (g s), and water use efficiency (WUE), were compared between two grasses, Calamagrostis epigeios (L.) Roth. and Psammochloa villosa (Trin.) Bor., and between their leaf types in a desertification steppe in North China. The two species had a similar habitat, but differed in leaf area and rhizome depth. Leaf P N, E, and g s for P. villosa were significantly greater than those for C. epigeios in the growing season, but WUE for the former species was only 50 and 80 % of that for the latter one in dry and rainy seasons, respectively. In general, leaf P N, E, g s, and WUE for both vegetative and reproductive shoots of the two species exhibited little variations between leaf types or with leaf age, even though there were some remarkable differences between dry and rainy seasons. The mean leaf P N and E in reproductive shoots of P. villosa were significantly lower than those in its vegetative shoots in rainy season, while these differences were much smaller for those of C. epigeios. P. villosa with deeper rhizome roots has relative higher leaf P N, E, and g s, but a smaller WUE in the arid desertification steppe region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号