首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

2.
The contributions made by the alpha and beta subunits of E. coli glycyl-tRNA synthetase to the recognition of tRNA have been investigated via binding and immunological methods. Using the nitrocellulose filter assay, we have shown that isolated beta subunit, but not the alpha subunit, binds [14C]glycyl-tRNA with an affinity comparable to that of the native enzyme. Further, the data indicate that the beta subunit possesses one binding site for glycyl-tRNA while the native or reconstituted enzyme (alpha 2 beta 2) has two sites. Rabbit antibodies directed at the beta subunit or the holoenzyme inhibit efficiently the ability of the enzyme to aminoacylate tRNA while alpha-subunit antibodies have a smaller effect. Since none of the antisera have an appreciable effect on the ATP-PPi exchange activity of the enzyme under these conditions, the beta-subunit (and holoenzyme) antisera evidently interfere with productive tRNA binding. Taken together, the data indicate that the larger, beta subunit of glycyl-tRNA synthetase plays a major role in tRNA recognition.  相似文献   

3.
The localization of the binding sites of the different ligands on the constitutive subunits of yeast phenylalanyl-tRNA synthetase was undertaken using a large variety of affinity and photoaffinity labelling techniques. The RNAPhe was cross-linked to the enzyme by non-specific ultraviolet irradiation at 248 nm, specific irradiation in the wye base absorption band (315 nm), irradiation at 335 nm, in the absorption band of 4-thiouridine (S4U) residues introduced in the tRNA molecule, or by Schiff's base formation between periodate-oxidized tRNAPhe (tRNAPheox) and the protein. ATP was specifically incorporated in its binding site upon photosensitized irradiation. The amino acid could be linked to the enzyme upon ultraviolet irradiation, either in the free state, engaged in the adenylate or bound to the tRNA. The tRNA, the ATP molecule and the amino acid linked to the tRNA were found to interact exclusively with the beta subunit (Mr 63000). The phenylalanine residue, either free or joined to the adenylate, could be cross-linked with equal efficiency to eigher type of subunit, suggesting that the amino acid binding site is located in a contact area between the two subunits. The Schiff's base formation between tRNAPheox and the enzyme shows the existence of a lysyl group close to the binding site for the 3'-terminal adenosine of tRNA. This result was confirmed by the study of the inhibition of yeast phenylalanyl-tRNA synthetase with pyridoxal phosphate and the 2',3'-dialdehyde derivative of ATP, oATP.  相似文献   

4.
Modification of phenylalanyl-tRNA synthetase from E. coli MRE600 by adenosine-5'-trimetaphosphate, phosphorylating analog of ATP was shown to bring about the enzyme inactivation in the reactions of tRNA aminoacylation and ATP-[32P]pyrophosphate exchange. ATP when added in the reaction mixture protects the enzyme against inactivation in both reactions and decreases the level of covalent attachment of the analog. Phenylalanine has no protective effect. tRNA exhibits slight protective effect. Adenosine-5'-trimetaphosphate modifies both types (alpha and beta) of subunits of phenylalanyl-tRNA synthetase which is of alpha 2 beta 2 structure. ATP protects both types of the enzyme subunits against the covalent attachment of the analog. Disposition of the ATP-binding centers in the contact region of the nonequivalent subunits of the enzyme was proposed. The level of covalent attachment of the analog to the enzyme exceeds the number of the enzyme active sites that may be a consequence of the other nucleotide-binding center labeling.  相似文献   

5.
L-Phenylalanyl-tRNA synthetase has been reacted with N-bromoacetyl-[14C]Phe-tRNAPhe to yield covalently linked enzyme-N-acetyl-[14C]Phe-tRNAPhe. The labelled enzyme was dissociated in the presence of 4M guanidinium chloride and the subunits subsequently separated by gel chromatography. The elution pattern is indicative of covalent binding of the tRNA to the β-subunit of the enzyme.  相似文献   

6.
Earlier studies have shown that native phenylalanyl-tRNA synthetase from baker's yeast contains two different kinds of subunits, alpha of molecular weight 73000 and beta of molecular weight 63000. The enzyme is an asymmetric tetramer alpha-2beta-2, which binds two moles of each ligand per mole. Incubation of the purified enzyme with trypsin results in an irreversible conversion: the alpha-subunit remains apparently unchanged but beta is rapidly degraded and yields a lighter species beta of molecular weight 41000. The trypsin-modified enzyme is an alpha-2beta-2 molecule which can still activate phenylalanine but cannot transfer it to tRNA-Phe; furthermore it does not bind tRNA-Phe but its kinetic parameters are identical to those of the native enzyme with respect to ATP and phenylalanine. Therefore the two beta subunits play a critical part in tRNA binding. Isolated alpha or beta subunits exhibit no significant activity and both types of subunit seem to be required for phenylalanine activation.  相似文献   

7.
The method of affinity chromatography on sepharose with immobilized tRNA in the presence of urea was developed for separating the subunits of phenylalanyl-tRNA synthetase from E. coli MRE-600 (subunit structure alpha 2 beta 2). Specific binding of large beta-subunits of the enzyme on immobilized tRNA testifies the localization of the tRNA-binding center on the beta-subunit of phenylalanyl-tRNA synthetase. Separately alpha- and beta-subunits of the enzyme exhibit no catalytic activity. Incubation of the mixture of alpha- and beta-subunits in conditions leading to reassociation of the oligomeric structure results in restoration of catalytic activity of the enzyme. In the presence of urea resin with immobilised analogs of ATP binds alpha- and beta-subunits of the enzyme. This testifies the presence of nucleotide-binding sites on both subunits. The possibility of using the affinity chromatography method to separate non-identical subunits of different enzymes is discussed.  相似文献   

8.
The effects of chronic ethanol ingestion on the in vivo aminoacylation of brain transfer RNA (tRNA) were examined in C57BL/6J mice. A pronounced inhibition in the formation of [14C]leucy]-tRNA and [14C]phenylalanyl-tRNA was observed in the ethanol drinking mice. Properties of aminoacyl-tRNA synthetases and tRNA were examined following their separation and isolation on a DEAE-cellulose column. Synthesis of [14C]leucyl-tRNA was found to have a complete dependence on ATP and Mg2+. Incubations were carried out by cross-matching tRNA from control rat brain with synthetases obtained from the brains of control or ethanol-drinking mice. Under these conditions, a decreased ability for aminoacylation could be demonstrated when the source of enzyme was derived from ethanol-treated brain. The data indicate that the major effect of ethanol ingestion on the aminoacylation reaction is exerted on aminoacyl-tRNA synthetases.  相似文献   

9.
The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C.6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme, however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 xx 10(-3) M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exhibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA enzyme interaction.  相似文献   

10.
Moor N  Lavrik O  Favre A  Safro M 《Biochemistry》2003,42(36):10697-10708
The interaction of human phenylalanyl-tRNA synthetase, a eukaryotic prototype with an unknown three-dimensional structure, with the tRNA(Phe) acceptor end was studied by s(4)U-induced affinity cross-linking with human tRNA(Phe) derivatives site-specifically substituted at the single-stranded 3' end. Two different subunits of the enzyme bind two adjacent nucleotides of the tRNA(Phe) 3' end: nucleotide 76 is associated with the catalytic alpha subunit, while nucleotide 75 is in contact with the beta subunit. The binding mode is similar to that revealed previously in structural and affinity cross-linking studies of the prokaryotic Thermus thermophilus phenylalanyl-tRNA synthetase. Our results suggest that the distinctive features of tRNA(Phe) acceptor end binding are conserved for the eukaryotic and prokaryotic tetrameric phenylalanyl-tRNA synthetases despite their significant differences in the domain composition of the beta subunits. The data from affinity cross-linking experiments with human phenylalanyl-tRNA synthetase complexed with small ligands (ATP and/or phenylalanine or a stable synthetic analogue of phenylalanyl adenylate) reveal that the location of the tRNA(Phe) acceptor end varies with the presence and nature of other substrates. The lack of substrate activity of human tRNA(Phe) substituted with s(4)U at the 3'-terminal position suggests that base-specific interactions of the terminal adenosine are critically important for a productive interaction. The conformational rearrangement of the tRNA 3' end induced by the other substrates and dictated by base-specific contacts of the terminal nucleotide is an additional means of ensuring the phenylalanylation specificity in both prokaryotic and eukaryotic systems.  相似文献   

11.
Escherichia coli phenylalanyl-tRNA synthetase has been characterized by small-angle neutron scattering. In solution (20 mM imidazole hydrochloride, pH 7.6, 10 mM 2-mercaptoethanol, and 0.1 mM ethylenediaminetetraacetic acid), this enzyme has a molecular weight of 227K +/- 20K with a radius of gyration of 48.3 +/- 0.6 A, independent of the presence of MgCl2 up to 50 mM. The change of the scattering upon adding tRNAPhe to the enzyme has been followed with 10 mM MgCl2 present in the buffer. One enzyme molecule is capable of binding two tRNAPhe molecules with affinity constants larger than 10(6) M-1. Parallel titration experiments in 73% 2H2O, close to the matching point of tRNA, show that the RG of the enzyme is not changed by the binding of one or two tRNAPhe molecules. These results are compared with quasi-electric light scattering studies [Holler, E., Wang, C. C., & Ford, N.C., Jr. (1981) Biochemistry 20, 861-867] where the addition of either MgCl2 or tRNAPhe was shown to cause dramatic changes of the apparent translational diffusion constant of phenylalanyl-tRNA synthetase.  相似文献   

12.
Affinity labelling has been employed to localize the substrate-binding sites on the enzyme subunits of phenylalanyl-tRNA synthetase (L-phenylalanine:tRNAPhe-ligase, EC 6.1.1.20) of Escherichia coli MRE-600 (alpha 2 beta 2-type). N-Chlorambucilylphenylalanyl-tRNA, N-bromoacetylphenylalanyl-tRNA, tRNAPhe containing an azido group at the eighth position of the molecule (S4U), tRNAPhe containing azido groups at different points of the molecule, p-azidoanilidate of phenylalanine, adenosine 5'-trimethaphosphate and N-bromoacetyl-L-phenylalaninyladenylate were used in experiments. It has been shown that tRNA-binding sites are formed on heavy beta-subunits of the enzyme. Phenylalanyl-tRNA is also localized on beta-subunits, while the aminoacyl moiety of aminoacyl-tRNA is localized near the contact region of subunits. The phenylalanine-binding site is located on light alpha-subunits of the enzyme. Adenosine 5'-trimethaphosphate and the analogue of phenylalanyladenylate modify both types of enzyme subunits. In our opinion, the catalytic center of tRNA aminoacylation is formed in the contact region of subunits, and the aminoacyl moiety is transferred into tRNA (from the alpha- into beta-subunit in the region of their contact).  相似文献   

13.
The capacity of some Escherichia coli (E. coli) ribosomal proteins to bind to tRNA and to hydrolyse their aminoacylated derivatives has been analysed. The following results were obtained: (1) The basic proteins L2, L16 and L33 and S20 bound f[3H]Met-tRNA to a similar extent as the total proteins from 30 S (TP30) or 50 S (TP50) when tested by nitrocellulose filtration, in contrast to the more acidic proteins L7/L12 and S8. (2) The proteins of the peptidyltransferase centre, L2 and L16, showed no distinct specificity, binding various charged tRNAs from E. coli and Saccharomyces cerevisiae (S. cerevisiae). (3) A number of isolated ribosomal proteins hydrolysed aminoacyl-tRNA as assessed by trichloroacetic acid precipitation, in contrast to the TP30 and TP50. (4) The loss of radiolabel from Ac[14C]Phe-tRNA and from [14C]tRNA in the presence of these proteins could not be prevented by RNasin, a ribonuclease inhibitor, whereas that mediated by a sample of non-RNase-free bovine serum albumin was inhibited. (5) When double-labelled, Ac[3H]Phe-[14C]tRNA was incubated with L2 both radiolabels were lost, indicating that this potential candidate for a peptidyltransferase enzyme does not specifically cleave the ester bond between the aminoacyl residue and the tRNA.  相似文献   

14.
Modified lysines resulting from the cross-linking of the 3' end of tRNA(Phe) to yeast phenylalanyl-tRNA synthetase (an enzyme with an alpha 2 beta 2 structure) have been characterized by sequencing the labeled chymotryptic peptides that were isolated by means of gel filtration and reversed-phase chromatography. The analysis showed that Lys131 and Lys436 in the alpha subunit are the target sites of periodate-oxidized tRNA(Phe). Mutant protein with a Lys----Asn substitution established that each lysine contributes to the binding of the tRNA but is not essential for catalysis. The major labeled lysine (K131) belongs to the sequence IALQDKL (residues 126-132), which shares three identities with the peptide sequence ADKL found around the tRNAox-labeled Lys61 in the large subunit of Escherichia coli phenylalanyl-tRNA synthetase [Hountondji, C., Schmitter, J. M., Beauvallet, C., & Blanquet, S. (1987) Biochemistry 26, 5433-5439].  相似文献   

15.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

16.
The phenylalanine and the phenylalanyl-tRNAPhe binding sites on the subunits of phenylalanyl-tRNA synthetase fromE.coli MRE-600 were localized using p-azidoanilidate of [14C]phenylalanine and N-bromoacetyl[14C]phenylalanyl-tRNAPhe. The phenylalanine recognizing site was shown to be situated on the subunit of the enzyme in close proximity to the contact region of the and subunits and the phenylalanyl-tRNAPhe recognizing site on the subunit. Transfer of the aminoacyl moiety from the subunit to the subunit of the enzyme was assumed to take place in the process of catalysis of the aminoacylation reaction.  相似文献   

17.
To further characterize the active site of 20beta-hydroxysteroid dehydrogenase (EC 1.1.1.53) from Streptomyced hydrogenans we synthesized 2alpha-bromoacetoxyprogesterone, a substrate for the enzyme in 0.05 M phosphate buffer at 25 degrees, pH 7.0, with Km and Vmax values of 1.90 X 10(-5) M and 6.09 nmol/min/mg of enzyme, respectively. This affinity labeling steroid inactivates 20beta-hydroxysteroid dehydrogenase in an irreversible and time-dependent manner which follows pseudo-first order kinetics with a t1/2 value of 4.6 hours. 2alpha-[2-3H]Bromoacetoxyprogesterone was synthesized and used to radiolabel the enzyme active site. Amino acid analysis of the acid hydrolysate of the radiolabeled enzyme supports a mechanism whereby the steroid moiety delivers the alkylating group to the steroid binding site of the enzyme where it reacts with a methionyl residue. Both 2alpha- and 11alpha-bromoacetoxyprogesterone alkylate a methionyl residue at the active site of 20beta-hydroxysteroid dehydrogenase. The enzyme was inactivated with a mixture containing both 2alpha-[2-3H]Bromoacetoxyprogesterone and 11alpha-2[2-14C]bromoacetoxyprogesterone. Following degradation of separate aliquots of the radiolabeled enzyme by cyanogen bromide or trypsin, the protein fragments were separated by gel filtration and ion exchange chromatography. Resolution of peptides carrying the 3H label from those possessing the 14C label demonstrates that 2alpha-bromoacetoxyprogesterone and 11alpha-bromoacetoxyprogesterone each label a different methionine at the steroid binding site of 20beta-hydroxysteroid dehydrogenase.  相似文献   

18.
Gamma-glutamyl transpeptidase, an enzyme of importance in glutathione metabolism, consists of two subunits, one of which (the light subunit, Mr 22,000; residues 380-568; rat kidney) contains residue Thr-523, which selectively interacts with the substrate analog acivicin to form an adduct that is apparently analogous to the gamma-glutamyl enzyme intermediate formed in the normal reaction (Stole, E., Seddon, A. P., Wellner, D., and Meister, A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1706-1709). The present studies indicate that specific arginine and lysine residues of the heavy subunit (Mr 51,000; residues 31-379) participate in catalysis by binding the substrates. Selective labeling studies of the enzyme with [14C]phenylglyoxal showed that Lys-99 and Arg-111 were modified. This appears to be the first instance in which phenylglyoxal was found to react with an enzyme lysine residue. Incorporation of [14C]phenylglyoxal into Lys-99 was decreased in the presence of acceptor site selective compounds. Incorporation into both Lys-99 and Arg-111 was decreased in the presence of glutathione. The findings suggest that Lys-99 and Arg-111 interact, respectively, with the omega- and alpha-carboxyl groups of glutathione. That these putative electrostatic binding sites are on the heavy subunit indicates that both subunits contribute to the active center. Two additional heavy subunit arginine residues become accessible to modification by phenylglyoxal when acivicin is bound, suggesting that interaction with acivicin is associated with a conformational change.  相似文献   

19.
Dehydroalanine is present in the histidine ammonia-lyase (histidase) from Pseudomonas putida ATCC 12633 as shown by reaction of purified enzyme with K14CN or NaB3H4 and subsequent identification of [14C]aspartate or [3H]alanine, respectively, following acid hydrolysis of the labeled protein. When labeling with cyanide was conducted under denaturing conditions, 4 mol of [14C]cyanide was incorporated per mol of enzyme (Mr 220 000), equivalent to one dehydroalanine residue being modified per subunit in this protein composed of four essentially identical subunits. In native enzyme, inactivation of catalytic activity by cyanide was complete when 1 mol of [14C]cyanide had reacted per mol of histidase, suggesting that modification of any one of the four dehydroalanine residues in the tetrameric enzyme was sufficient to prevent catalysis at all sites. Loss of activity on treatment with cyanide could be blocked by the addition of the competitive inhibitor cysteine or substrate if Mn2+ was also present. Cross-linking of native enzyme with dimethyl suberimidate produced no species larger than tetramer, thereby eliminating the possibility that an aggregation phenomenon might explain why only one-fourth of the dehydroalanyl residues was modified by cyanide during inactivation. A labeled tryptic peptide was isolated from enzyme inactivated with [14C]cyanide. Its composition was different from that of a tryptic peptide previously isolated from other histidases and shown to contain a highly reactive and catalytically important cysteine residue. Such a finding indicates the dehydroalanine group is distinct from the active site cysteine. Treatment of crude extracts with [14C]cyanide and purification of the inactive enzyme yielded labeled protein that release [14C]aspartate on acid hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The hyperthermophilic bacterium, Thermotoga maritima, grows up to 90 degrees C by fermenting carbohydrates and it disposes of excess reductant by H(2) production. The H(2)-evolving cytoplasmic hydrogenase of this organism was shown to consist of three different subunits of masses 73 (alpha), 68 (beta) and 19 (gamma) kDa and to contain iron as the only metal. The genes encoding the subunits were clustered in a single operon in the order hydC (gamma), hydB (beta), and hydA (alpha). Sequence analyses indicated that: (a) the enzyme is an Fe-S-cluster-containing flavoprotein which uses NADH as an electron donor; and (b) the catalytic Fe-S cluster resides within the alpha-subunit, which is equivalent to the single subunit that constitutes most mesophilic Fe-hydrogenases. The alpha- and beta-subunits of the purified enzyme were separated by chromatography in the presence of 4 M urea. As predicted, the H(2)-dependent methyl viologen reduction activity of the holoenzyme (45-70 U mg(-1)) was retained in the alpha-subunit (130-160 U mg(-1)) after subunit separation. However, the holoenzyme did not contain flavin and neither it nor the alpha-subunit used NAD(P)(H) or T. maritima ferredoxin as an electron carrier. The holoenzyme, but not the alpha-subunit, reduced anthraquinone-2,6-disulfonate (apparent K(m), 690 microM) with H(2). The EPR properties of the reduced holoenzyme, when compared with those of the separated and reduced subunits, indicate the presence of a catalytic 'H-cluster' and three [4Fe-4S] and one [2Fe-2S] cluster in the alpha-subunit, together with one [4Fe-4S] and two [2Fe-2S] clusters in the beta-subunit. Sequence analyses predict that the alpha-subunit should contain an additional [2Fe-2S] cluster, while the beta-subunit should contain one [2Fe-2S] and three [4Fe-4S] clusters. The latter cluster contents are consistent with the measured Fe contents of about 32, 20 and 14 Fe mol(-1) for the holoenzyme and the alpha- and beta-subunits, respectively. The T. maritima enzyme is the first 'complex' Fe-hydrogenase to be purified and characterized, although the reason for its complexity remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号