首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles and metabolic activity of heterotrophic bacteria, along with factors controlling their activity, are poorly known for large, turbid rivers. The aim of this study was to evaluate temporal patterns in heterotrophic bacterial production (BP) in the main channel of the Lower Mississippi River (LMR) in relation to several seasonally dynamic environmental factors. We hypothesized that whole-water BP would vary with levels of temperature, as well as phytoplankton biomass and suspended sediment concentration. Further, we hypothesized that bacteria attached to suspended sediment would comprise an important component of whole-water BP, their importance varying with sediment concentration. Measurements were made at three locations on the LMR for up to 29 months. Bacterial production in whole-water ranged over an order of magnitude between summer and winter, with little variation among sites. Peaks in whole-water BP were associated with periods of high suspended sediment concentrations in spring, and elevated phytoplankton biomass in summer. Attached BP was correlated with all the measures of sediment concentration, especially particulate phosphorus, and accounted for a large majority of water-column BP. After temperature, the only positive correlate of free-living cells was with phytoplankton biomass. Rates of BP in the LMR during summer were much higher than measurements made previously in the Mississippi River plume, similar to the Hudson River, but lower than in three large tributaries of the LMR. Determination of bacterial population dynamics is an essential step in analysis of the food web structure and biogeochemical processes of large rivers. This is the first study of heterotrophic bacterial production in the main channel of the LMR.  相似文献   

2.
Processing of the phytoplankton-derived organic sulfur compound dimethylsulfoniopropionate (DMSP) by bacteria was studied in seawater microcosms in the coastal Gulf of Mexico (Alabama). Modest phytoplankton blooms (peak chlorophyll a [Chl a] concentrations of approximately 2.5 microg liter(-1)) were induced in nutrient-enriched microcosms, while phytoplankton biomass remained low in unamended controls (Chl a concentrations of approximately 0.34 microg liter(-1)). Particulate DMSP concentrations reached 96 nM in the enriched microcosms but remained approximately 14 nM in the controls. Bacterial biomass production increased in parallel with the increase in particulate DMSP, and nutrient limitation bioassays in the initial water showed that enrichment with DMSP or glucose caused a similar stimulation of bacterial growth. Concomitantly, increased bacterial consumption rate constants of dissolved DMSP (up to 20 day(-1)) and dimethylsulfide (DMS) (up to 6.5 day(-1)) were observed. Nevertheless, higher DMSP S assimilation efficiencies and higher contribution of DMSP to bacterial S demand were found in the controls compared to the enriched microcosms. This indicated that marine bacterioplankton may rely more on DMSP as a source of S under oligotrophic conditions than under the senescence phase of phytoplankton blooms. Phylogenetic analysis of the bacterial assemblages in all microcosms showed that the DMSP-rich algal bloom favored the occurrence of various Roseobacter members, flavobacteria (Bacteroidetes phylum), and oligotrophic marine Gammaproteobacteria. Our observations suggest that the composition of the bacterial assemblage and the relative contribution of DMSP to the overall dissolved organic sulfur/organic matter pool control how efficiently bacteria assimilate DMSP S and thereby potentially divert it from DMS production.  相似文献   

3.
Parameters characterizing bacterial biomass and metabolic activityare compared with phytoplankton biomass and daily primary productionrates throughout the year. Between late March (before the onsetof the phytoplankton spring bloom) and mid-July (diatom maximum),bacterial degradation of organic matter was more closely relatedto phytoplankton productivity than during the rest of the year.Bacterial production (as estimated by amino acid net uptake)was significantly correlated with concentrations of chlorophyll and pheopigments. However, bacterial production was correlatedless closely with primary production and only weakly with bacterialbiomass. Bacterial biomass was also only weakly correlated withprimary production but significantly with pheopigments. Numbersof active bacteria as estimated by autoradiography covariedclosely with bacterial production and cell numbers. Wheneverbacterial production was low, enhanced proportions of aminoacids were respired. Oxygen consumption measurements showedthat the size fraction <3 µm contributed 25–75%to total respiration. On average, bacterial biomass comprised11 % of paniculate organic matter and roughly equalled phytoplanktonbiomass. During the growing season, bacterial production inthe uppermost 20 m comprised about 20% of phytoplankton productionwith large seasonal fluctuations. A tentative carbon budgetof the euphotic zone including primary production, zooplanktongrazing, bacterial production and sedimentation is presented. 1Present address: Institute of Marine Resources A-018, ScrippsInstitution of Oceanography, University of California, San Diego,La Jolla, CA 92093, USA  相似文献   

4.
We studied the response pattern of phytoplankton to nutrient concentrations in Little Vermilion Bay, Louisiana in July and November 2013. It is important to understand the response of phytoplankton to nutrient concentrations in order to find impacts of eutrophication and improve the water quality for survival of fish and other aquatic life. Total Nitrogen and Total Phosphorus were measured in Little Vermillion Bay at several sampling locations along with some other water quality parameters and response of phytoplankton biomass was evaluated. The spatial–temporal pattern of water quality parameters in the study area was assessed using a spatial interpolation method. Phytoplankton biomass was positively correlated with nutrient enrichment in Little Vermillion Bay. Chlorophyll a concentrations were found to be strongly dependent on Total Nitrogen and Total Phosphorus in the water column. Nutrient concentration in the water column has a strong control over phytoplankton biomass and primary production. The TN:TP ratio was evaluated to establish the limiting nutrient for eutrophication in the study area. Both nitrogen and phosphorus were found to have strong relationships with phytoplankton growth and a growth limiting nutrient was not established for Little Vermilion Bay.  相似文献   

5.
During three periods of 16 to 25 days, bacterioplankton production, bacterial cell volume, chlorophyll a, CO2 assimilation, and particulate organic carbon were measured in enclosures situated in the eutrophic estuary Roskilde Fjord, Denmark. The enclosures were manipulated with respect to sediment contact and contents of inorganic nutrients, planktivorous fish, and suspension-feeding bivalves. Nutrient enrichment, the presence of suspension feeders, and sediment contact induced pronounced changes in bacterial production, as well as minor changes in bacterial cell volume; however, these effects seemed to be indirect, transmitted via phytoplankton. Bacterial production, measured as [3H]thymidine incorporation, closely followed changes in phytoplankton biomass and production, with time lags of 5 to 10 days. Good correlations of mean bacterioplankton production to chlorophyll a concentration and CO2 assimilation suggested phytoplankton to be the dominating source of bacterial substrate, apparently independent of nutrient stress. Zooplankton >140 μm, bivalves, and sediment seemed to provide insignificant, if any, substrate for bacterioplankton, and benthic suspension feeders seemed not to act as direct competitors for dissolved organic carbon. The bacterioplankton mean cell volume, measured by image analysis, changed seasonally, with the smallest cells during the summer. Within each period, the bacterial cell volume correlated positively to growth rate and negatively to temperature.  相似文献   

6.
The effect of nutrient limitation on Baltic Sea ice algae, and substrate and nutrient limitation on ice bacteria, was studied in a series of in situ -experiments conducted during the winter of 2002 in northern Baltic Sea. Community level changes in algal biomass (chlorophyll a) and productivity, and bacterial thymidine and leucine incorporation were followed for one week after the addition of nutrient and/or organic carbon rich filtered seawater to the experimental units. The results showed the major contribution of snow cover to the algal responses during the beginning of the ice-covered season. Algal communities were able to grow even in January if no snow was present. Nutrient addition did occasionally have an effect on algal biomass and productivity in the ice. Surprisingly, seeding effect from the ice to the underlying water was negatively affected by the nutrient availability in March. Bacterial limitation varied between nutrient (phosphorus) and substrate limitations. The results showed, that limitation in both algal and bacterial communities changed periodically in the northern Baltic Sea ice.  相似文献   

7.
1. A year-round study was conducted in a mesotrophic reservoir to determine the dynamics of zooplankton populations as a function of food availability (edible phytoplankton), nutrient concentration, temperature and hydraulic regime.
2. Rotifer biomass was correlated with soluble reactive phosphorus (SRP) concentration. The abundance of the rotifers Keratella cochlearis and Anuraeopsis fissa were not correlated with food availability (measured by chlorophyll and cell counts) but showed a strong dependence on P availability. Another rotifer, Synchaeta oblonga , and crustacean species were not related to nutrient availability but seemed to be dependent on food concentrations, especially of some phytoplankton taxa.
3. In this field study, rotifers seemed more susceptible than Daphnia or copepods to P-limitation. Among rotifer species, Keratella seemed to be more susceptible than Anuraeopsis to P limitation. Different susceptibilities of zooplankton species to nutrient limitation may be important in explaining the dynamics of these organisms in natural situations. Further analyses are warranted to clarify the interactions between nutrient limitation and energy limitation among zooplankton.  相似文献   

8.
Phytoplankton dynamics, bacterial standing stocks and living microbial biomass (derived from ATP measurements, 0.7-200 mm size class) were examined in 1996 in the newly flooded (1995) Sep Reservoir ('Massif Central,' France), for evidence of the importance of the microbial food web relative to the traditional food chain. Phosphate concentrations were low, N:P ratios were high, and phosphate losses converted into carbon accounted for <50% of phytoplankton biomass and production, indicating that P was limiting phytoplankton development during the study. The observed low availability of P contrasts with the high release of "directly" assimilable P often reported in newly flooded reservoirs, suggesting that factors determining nutrient dynamics in such ecosystems are complex. The phosphate availability, but also the water column stability, seemed to be among the major factors determining phytoplankton dynamics, as (i) large-size phytoplankton species were prominent during the period of increasing water column stability, whereas small-size species dominated phytoplankton assemblages during the period of decreasing stability, and (ii) a Dinobryon divergens bloom occurred during a period when inorganic P was undetectable, coinciding with the lowest values of bacterial standing stocks. Indication of grazing limitation of bacterial populations by the mixotrophic chrysophyte D. divergens (in late spring) and by other potential grazers (mainly rotifers in summer) seemed to be confirmed by the Model II or functional slopes of the bacterial vs phytoplankton regressions, which were always <0.63. Phytoplankton biomass was not correlated with phosphorus sources and its contribution was remarkably low relative to the living microbial biomass which, in contrast, was positively correlated with total phosphorus in summer. We conclude that planktonic microheterotrophs are strongly implicated in the phosphorus dynamics in the Sep Reservoir, and thus support the idea that an important amount of matter and energy flows through the "microbial loop" and food web, shortly after the flooding of a reservoir.  相似文献   

9.
Synergy of Fresh and Accumulated Organic Matter to Bacterial Growth   总被引:1,自引:0,他引:1  
The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal.  相似文献   

10.
This study was conducted to evaluate: (1) the bacterial growth and the dissolved organic carbon (DOC) uptake in an Amazonian lake (Lake Batata) at high-water and low-water periods of the flood pulse; (2) the influence of nitrogen and phosphorus (NP) additions on bacterial growth and DOC uptake in Lake Batata at two flood pulse periods; and (3) the bioavailability of the main DOC sources in Lake Batata. Lake Batata is a typical clear-water Amazonian lake, located in the watershed of Trombetas River, Central Amazon, Brazil. Bacterial batch cultures were set up with 90% 0.2-μm filtered water and 10% inoculum from Lake Batata. N-NH4NO3 and P-KH2PO4, with final concentrations of 50 and 5 μM, respectively, were added to the cultures, except for controls. Extra sources of DOC (e.g., algal lysate, plant leachates) were added to constitute six distinct treatments. Bacterial response was measured by maximum bacterial abundance and rates of bacterial production, respiration, DOC uptake, and bacterial growth efficiency (BGE). Bacterial growth and DOC uptake were higher in NP treatments than in controls, indicating a consistent nutrient limitation in Lake Batata. The composition of DOC also seems to be an important regulating factor of bacterial growth in Lake Batata. Seasonally, bacterial growth and DOC bioavailability were higher at low-water period, when the phytoplankton is a significant extra source of DOC, than at high-water period, when the forest is the main source of DOC. DOC bioavailability was better estimated based on the diversity and the diagenetic stage of carbon compounds than on single classes of labile compounds. Changes in BGE were better related to CNP stoichiometry in the water, and the “excess” of organic substrates was oxidized in catabolism, despite the quality of these compounds for bacterial growth. Finally, we conclude that bacterial growth and DOC uptake vary throughout the flood pulse in clear-water Amazonian ecosystems as a result of changes in nutrient concentration and in DOC composition.  相似文献   

11.
In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters.  相似文献   

12.
Summary Protozooplankton were sampled in the iceedge zone of the Weddell Sea during the austral spring of 1983 and the austral autumn of 1986. Protozooplankton biomass was dominated by flagellates and ciliates. Other protozoa and micrometazoa contributed a relatively small fraction to the heterotrophic biomass. During both cruises protozoan biomass, chlorophyll a concentrations, phytoplankton production and bacterial biomass and production were low at ice covered stations. During the spring cruise, protozooplankton, phytoplankton, and bacterioplankton reached high concentrations in a welldeveloped ice edge bloom 100 km north of the receding ice edge. During the autumn cruise, the highest concentrations of biomass were in open water well-separated from the ice edge. Integrated protozoan biomass was <12% of the biomass of phytoplankton during the spring cruise and in the autumn the percentages at some stations were >20%. Bacterial biomass exceeded protozooplankton biomass at ice covered stations but in open water stations during the fall cruise, protozooplankton biomass reached twice that of bacteria in the upper 100m of the water column. The biomass of different protozoan groups was positively correlated with primary production, chlorophyll a concentrations and bacterial production and biomass, suggesting that the protozoan abundances were largely controlled by prey availability and productivity. Population grazing rates calculated from clearance rates in the literature indicated that protozooplankton were capable of consuming significant portions of the daily phyto- and bacterioplankton production.  相似文献   

13.
Processing of the phytoplankton-derived organic sulfur compound dimethylsulfoniopropionate (DMSP) by bacteria was studied in seawater microcosms in the coastal Gulf of Mexico (Alabama). Modest phytoplankton blooms (peak chlorophyll a [Chl a] concentrations of ~2.5 μg liter−1) were induced in nutrient-enriched microcosms, while phytoplankton biomass remained low in unamended controls (Chl a concentrations of ~0.34 μg liter−1). Particulate DMSP concentrations reached 96 nM in the enriched microcosms but remained approximately 14 nM in the controls. Bacterial biomass production increased in parallel with the increase in particulate DMSP, and nutrient limitation bioassays in the initial water showed that enrichment with DMSP or glucose caused a similar stimulation of bacterial growth. Concomitantly, increased bacterial consumption rate constants of dissolved DMSP (up to 20 day−1) and dimethylsulfide (DMS) (up to 6.5 day−1) were observed. Nevertheless, higher DMSP S assimilation efficiencies and higher contribution of DMSP to bacterial S demand were found in the controls compared to the enriched microcosms. This indicated that marine bacterioplankton may rely more on DMSP as a source of S under oligotrophic conditions than under the senescence phase of phytoplankton blooms. Phylogenetic analysis of the bacterial assemblages in all microcosms showed that the DMSP-rich algal bloom favored the occurrence of various Roseobacter members, flavobacteria (Bacteroidetes phylum), and oligotrophic marine Gammaproteobacteria. Our observations suggest that the composition of the bacterial assemblage and the relative contribution of DMSP to the overall dissolved organic sulfur/organic matter pool control how efficiently bacteria assimilate DMSP S and thereby potentially divert it from DMS production.  相似文献   

14.
Evaluating the factors that regulate bacterial growth in natural ecosystems is a major goal of modern microbial ecology. Phytotelm bromeliads have been used as model ecosystems in aquatic ecology as they provide many independent replicates in a small area and often encompass a wide range of limnological conditions. However, as far as we know, there has been no attempt to evaluate the main regulatory factors of bacterial growth in these aquatic ecosystems. Here, we used field surveys to evaluate the main bottom-up factors that regulate bacterial growth in the accumulated water of tank bromeliads. Bacterial production, water temperature, water color, chlorophyll-a, and nutrient concentrations were determined for 147 different tank bromeliads in two different samplings. Bromeliad position and the season of sampling were also noted. Bacterial production was explained by ion ammonium concentration and water temperature, but the total variance explained was low (r 2 = 0.104). Sampling period and bromeliad position were included in additional models that gave empirical support for predicting bacterial production. Bromeliad water tanks are extremely variable aquatic ecosystems in space (among bromeliads) and time (environmental conditions can change within hours), and it is well known that bacterial production responds rapidly to environmental change. Therefore, we concluded that several factors could independently regulate bacterial growth in phytotelm bromeliads depending on the characteristics of each bromeliad, such as location, amount of detritus, and ambient nutrient concentrations. A clear bottom-up limitation pattern of bacterial production in tropical phytotelm bromeliads was not found. Handling editor: Luigi Naselli-Flores  相似文献   

15.
1. The relative importance of zooplankton grazing and nutrient limitation in regulating the phytoplankton community in the non-stratified Lake Kvie, Denmark, were measured nine times during the growing season.
2. Natural phytoplankton assemblage bioassays showed increasing importance of nutrient limitation during summer. Growth rates at ambient nutrient concentrations were continually below 0.12 per day, while co-enrichment with nitrogen (N) and phosphorus (P) to above concentration-saturated conditions enhanced growth rates from May to the end of July.
3. Stoichiometric ratios of important elements in seston (C : N, C : P, N : P), in lake water (TN : TP), in external loading (TN : TP) and in internal loading (DIN : DIP) were measured to determine whether N or P could be the limiting nutrient. TN : TP molar ratio of both lake water, benthic fluxes and external loading suggested P limitation throughout the growing season. However, seston molar ratios suggested moderate P-deficiency only during mid-summer.
4. Abundance and community structure of the zooplankton varied considerably through the season and proved to be important in determining the responses of algal assemblages to grazing. High abundance of cladocerans and rotifers resulted in significant grazing impact, while cyclopoid copepods had no significant effect on the phytoplankton biomass.
5. Regeneration of ammonium and phosphate by zooplankton were periodically important for phytoplankton growth. A comparison of nutrient regeneration by zooplankton with nutrient inputs from sediment and external sources indicated that zooplankton may contribute significantly in supplying N and P for the growth of phytoplankton.  相似文献   

16.
Various nutrient incorporation and plant production parameters were measured to assess their relative usefulness in determining possible nutrient limitation of the wetland plant Peltandra virginica (L.) Kunth. From four stations located along a transect in a tidal freshwater marsh, we documented spatial differences in peak standing biomass of plants. Plant biomass was positively correlated with porewater concentrations of both ammonium and phosphate, but not with sediment concentrations of total nitrogen and phosphorus. Tissue nitrogen and phosphorus concentrations decreased significantly over the growing season, but there were no differences among plants from the four stations, and correlations between plant biomass and ratios of carbon to nitrogen and carbon to phosphorus were weak. Because in situ fertilization of plants had no effect on either peak biomass or tissue concentrations of nitrogen and phosphorus, growth of Peltandra was probably not nutrient limited. Other criteria did predict nitrogen or nitrogen and phosphorus limitation, however, demonstrating that application of parameters used by ecologists to support contentions of nutrient limitation can yield conflicting results. Assessment of nutrient limitation of primary producers may be an ambiguous and unnecessary task in some environments where these criteria are utilized.  相似文献   

17.
18.
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba.  相似文献   

19.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

20.
Daily bacterial abundance and production, heterotrophic nanoflagellates (HNAN) abundance, chlorophyll, and NH4 + concentrations were measured in four indoor 400-liter tanks over 13 days to study the role of heterotrophic bacterioplankton in NH4 - cycling and to identify the succession of top-down and bottom-up processes in regulating bacterial biomass and production. Ammonium (NH4 +) was added to these four tanks daily whenever its concentration in tanks was < 4 m. Tanks 3 and 4 (treatment tanks) also received 4 m of glucose daily till the end of experiment. Lower NH4 - concentrations and higher bacterial specific growth rate and production observed in the treatment tanks indicated that bacteria might take up NH4+ with the addition of labile organic carbon. Bacterial biomass was controlled by substrate supply and HNAN grazing from day 7 to day 13, when phytoplankton declined. Bacterial size distribution patterns were determined primarily by substrate supply, with HNAN grazing playing a less important role. Certain variabilities existed between the control (and the treatment) tanks. These inconsistencies could be due to differences in time of expression of given variables. However, the total amounts of bacterial biomass accumulated in the four tanks were very similar. The inconsistency in timing of expression of variables was probably due to different initial conditions in each tank. The ecological meanings of the inconsistency in timing and overall consistency were discussed. Correspondence to: F.-K. Shiah  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号