首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Di- and tri-mannosyl-cyclomaltoheptaoses (beta-cyclodextrins, beta CDs), which were synthesized together with monomannosyl-beta CD in a large-scale production by reverse action of alpha-mannosidase from jack bean, were isolated and purified by HPLC. The structures of seven isomers of di-mannosyl-beta CD and six isomers of tri-mannosyl-beta CD were elucidated by FABMS and NMR spectroscopy, and by enzymatic methods.  相似文献   

2.
We have previously shown that antigens complexed to the receptor-recognized form of alpha(2)-macroglobulin (alpha(2)M*) demonstrate enhanced immune responsiveness mediated by the low density lipoprotein receptor-related protein LRP/CD91. Recently, we developed a proteinase-independent method to covalently bind antigens to alpha(2)M*. Given the potential applications of this chemistry, we analyzed the kinetics, thermodynamics, and pH dependence of this reaction. The incorporation of lysozyme into alpha(2)M* was a mixed bimolecular second-order reaction with a specific rate constant of 91.0 +/- 6.9 m(-1) s(-1), 50.0 degrees C, pH 7.4. The activation energy, activation entropy, and Gibbs' free energy at 50.0 degrees C were 156 kJ mol(-1), 266 J mol(-1) K(-1), and 70 kJ mol(-1), respectively. The rate of incorporation increased as a function of pH from pH 5.0 to 7.0 and was unchanged thereafter. Furthermore, the reaction between alpha(2)M* and lysozyme was irreversible. The data are consistent with a two-step mechanism. In the first step, alpha(2)M* reforms its thiol ester bond, entering a reactive state that mimics the proteolytically induced "nascent state." In the rate-limiting second step, the reformed bond quickly undergoes nucleophilic attack by lysozyme. The kinetic equations derived in this study are the basis for optimizing the formation of stable alpha(2)M*.antigen complexes.  相似文献   

3.
Concanavalin A (ConA), one of the most studied plant lectins, is formed in jack bean (Canavalia ensiformis) seeds. ConA is synthesized as an inactive glycoprotein precursor proConA. Different processing events such as endoproteolytic cleavages, ligation of peptides and deglycosylation of the precursor are required to generate the different polypeptides constitutive of mature ConA. Among these events, deglycosylation of the prolectin appears as a key step in the lectin activation. The detection of deglycosylated proConA in immature jack bean seeds indicates that endoproteolytic cleavages are not prerequisite for its deglycosylation. Both the structure of the lectin precursor N-glycans Man8-9GlcNAc2 and the capacity of Endo H to cleave these oligosaccharide from native proConA in vitro favoured Endo H-type glycosidases as candidates for proConA deglycosylation in planta. Evidence for pH-dependent changes in the prolectin folding were obtained from analysis of the N-glycan accessibility and activation of the deglycosylated lectin precursor in acidic conditions. These data are consistent with the observation that both deglycosylation and acidification of the pH are the minimum requirements to convert the inactive precursor into an active lectin.  相似文献   

4.
A series of lactosaminylated oligosaccharides found in mucin type O-glycans was synthesized using a generalized block strategy. The synthesis involved the addition of a protected lactosamine donor to a partially protected T-disaccharide derivative. The nonreducing galactose residues of the deblocked oligosaccharide products could be removed by beta-galactosidase from jack bean to produce the corresponding GlcNAc terminated compounds. A series of tri- to hexasaccharides was thus efficiently produced.  相似文献   

5.
Kifunensine, produced by the actinomycete Kitasatosporia kifunense 9482, is an alkaloid that corresponds to a cyclic oxamide derivative of 1-amino mannojirimycin. This compound was reported to be a weak inhibitor of jack bean alpha-mannosidase (IC50 of 1.2 x 10(-4) M) (Kayakiri, H., Takese, S., Shibata, T., Okamoto, M., Terano, H., Hashimoto, M., Tada, T., and Koda, S. (1989) J. Org. Chem. 54, 4015-4016). We also found that kifunensine was a poor inhibitor of jack bean and mung bean aryl-alpha-mannosidases, but it was a very potent inhibitor of the plant glycoprotein processing enzyme, mannosidase I (IC50 of 2-5 x 10(-8) M), when [3H]mannose-labeled Man9GlcNAc was used as substrate. However, kifunensine was inactive toward the plant mannosidase II. Studies with rat liver microsomes also indicated that kifunensine inhibited the Golgi mannosidase I, but probably does not inhibit the endoplasmic reticulum mannosidase. Kifunensine was tested in cell culture by examining its ability to inhibit processing of the influenza viral glycoproteins in Madin-Darby canine kidney cells. Thus, when kifunensine was placed in the incubation medium at concentrations of 1 microgram/ml or higher, it caused a complete shift in the structure of the N-linked oligosaccharides from complex chains to Man9(GlcNAc)2 structures, in keeping with its inhibition of mannosidase I. On the other hand, even at 50 micrograms/ml, deoxymannojirimyucin did not prevent the formation of all complex chains. Thus kifunensine appears to be one of the most effective glycoprotein processing inhibitors observed thus far, and knowledge of its structure may lead to the development of potent inhibitors for other processing enzymes.  相似文献   

6.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
A simple procedure has been devised to isolate beta-galactosidase from jack bean meal. The final preparation gives one major protein banc in disc gel electrophoresis. The substrate specificity of this enzyme toward some natural oligosaccharides, glycoproteins, and sphingoglycolipids has been examined in detail. Among three isomers of N-acetyllactosamine, Galbeta1leads to4GlcNAc; while Galbeta1leads to3GlcNAc was hydrolyzed very slowly. This property can be used to distinguish the galactose linkage in asialo-GM1 (Galbeta1leads to3GalNAcbeta1leads to4Galbeta1leads to4Glcleads toCer) and that in lacto-N-neotetraosylceramide (Galbeta1leads to4GlcNAcbeta1leads to 3Galbeta1leads to4Glcleads toCer). For hydrolyzing glycolipids, the effect of sodium taurodeoxycholate and sodium taurochenodeoxycholate on the rate of hydrolysis was carefully examined. This enzyme hydrolyzes lactosylceramide and asialo-GM1 faster than GM1. These results suggest that in addition to the type and linkage of the penultimate sugar unit, the sugar unit at the distal position of the saccharide chain also affects the hydrolysis rate. It also readily liberates 80% D-galactosyl units from asialo alpha1-acid glycoprotein. Escherichia coli beta-galactosidase on the other hand cannot hydrolyze asialo-alpha1-acid glycoprotein, lactosylceramide, GM1, asialo-GM1, and lacto-N-neotetraosylceramide. The molecular weight of this enzyme is about 75,000 and the isoelectric point is pH 8.0. With p-nitrophenyl beta-D-galactopyranoside as substrate, optimal activity occurs at pH 2.8 with glycine-HCl buffer and at pH 3.5 with citrate-phosphate buffer. With lactose as substrate, the pH optimum in these two buffers are 2.8 and 4.0, respectively. Km values for p-nitrophenyl beta-D-galactopyranoside, o-nitrophenyl beta-D-galactopyranoside and lactose are 0.51 mM, 0.63 mM, and 12.23 mM, respectively. Many inhibitors for this enzyme including inorganic ions, monosaccharides, and glycosides are investigated. In contrast to E. coli beta-galactosidase, jack bean beta-galactosidase is not inhibited by p-aminophenyl thio-beta-D-galactopyranoside.  相似文献   

8.
The lipid-linked oligosaccharides synthesized in the presence of the alpha-glucosidase inhibitors, 1-deoxynojirimycin (DJN) and N-methyl-1-deoxynojirimycin (MDJN), were compared in IEC-6 intestinal epithelial cells in culture. HPLC analysis of the oligosaccharides obtained before and after exhaustive jack bean alpha-mannosidase digestion indicates that control and MDJN-treated cells synthesize similar amounts of Glc3Man9GlcNAc2-PP-dolichol. In contrast, the formation of this compound is greatly reduced in DJN-treated cells, the major lipid-linked oligosaccharide found being Man9GlcNAc2-PP-dolichol. The decreased availability of the preferred donor for protein glycosylation may account for the impaired glycosylation and secretion of certain glycoproteins in the presence of DJN.  相似文献   

9.
Mannosidase II was purified from mung bean seedlings to apparent homogeneity by using a combination of techniques including DEAE-cellulose and hydroxyapatite chromatography, gel filtration, lectin affinity chromatography, and preparative gel electrophoresis. The release of radioactive mannose from GlcNAc[3H]Man5GlcNAc was linear with time and protein concentration with the purified protein, did not show any metal ion requirement, and had a pH optimum of 6.0. The purified enzyme showed a single band on SDS gels that migrated with the Mr 125K standard. The enzyme was very active on GlcNAcMan5GlcNAc but had no activity toward Man5GlcNAc, Man9GlcNAc, Glc3Man9GlcNAc, or other high-mannose oligosaccharides. It did show slight activity toward Man3GlcNAc. The first product of the reaction of enzyme with GlcNAcMan5GlcNAc, i.e., GlcNAcMan4GlcNAc, was isolated by gel filtration and subjected to digestion with endoglucosaminidase H to determine which mannose residue had been removed. This GlcNAcMan4GlcNAc was about 60% susceptible to Endo H indicating that the mannosidase II preferred to remove the alpha 1,6-linked mannose first, but 40% of the time removed the alpha 1,3-linked mannose first. The final product of the reaction, GlcNAcMan3GlcNAc, was characterized by gel filtration and various enzymatic digestions. Mannosidase II was very strongly inhibited by swainsonine and less strongly by 1,4-dideoxy-1,4-imino-D-mannitol. It was not inhibited by deoxymannojirimycin.  相似文献   

10.
6-O-[6-O-(N-acetyl-beta-D-glucosaminyl)-N-acetyl-beta-D-glucosaminyl]cyclomaltoheptaose (beta CD) and three positional isomers of 6(1),6(n)-di-O-(N-acetyl-beta-D-glucosaminyl)cyclomaltoheptaose (n=2, 3, and 4) in a mixture of products from beta CD and N-acetylglucosamine by the reversed reaction of beta-N-acetylhexosaminidase from jack bean were isolated and purified by HPLC. The structures of four isomers of di-N-acetylglucosaminyl-beta CDs were determined by FABMS and NMR spectroscopy. The degree of polymerization of the branched oligosaccharides produced by enzymatic degradation with bacterial saccharifying alpha-amylase (BSA) was established by LC-MS methods.  相似文献   

11.
Urease with a purity meeting the requirements of analytical use was purified from jack bean meal through steps consisting of 20% acetone extraction, heat treatment, acid precipitation, and lyophilization. For extraction of urease, one part of bean meal was mixed with 5 parts of 20% acetone containing 1 mM EDTA and 1 mM 2-mercaptoethanol, and stirred at 20 degrees C for 5 min. Milky substances in the extract were removed by heat treatment. Urease in the clear yellow supernatant was precipitated by adjusting the pH of the solution to 5.4 with citric acid. The acid precipitated urease was neutralized by dissolving in 0.015 M phosphate buffer, pH 8.5 (final pH 6.8 to 7.0) and then lyophilized. By this procedure, the purity of the enzyme was increase 14.7 fold, the recovery of activity was 63%, and the yield was 6.75 g from 1 kg of bean seeds. The specific activity of the preparation was 411 units/mg protein (240 units/mg solid), and the free ammonia content was less than 0.01 microgram per unit. Some other proteins were present in the urease preparation as examined by gel filtration and gradient polyacrylamide gel electrophoresis. The molecular weight of the enzyme estimated by gel filtration was 480,000. However, two urease activity bands with molecular weight of 230,000 and 480,000 were observed in the polyacrylamide gel electrophoregram. From the result of determination of blood urea nitrogen (BUN), this simple purification procedure could be used for practical preparation of urease from jack bean meal for clinical analysis.  相似文献   

12.
Radiolabelled GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (1), GlcNAc beta 1-3)GlcNAc beta 1-6)Gal beta 1-OCH3 (4), GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (7), and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (10) were cleaved partially with jack bean beta-N-acetylhexosaminidase (EC 3.2.1.30), and the digests were analysed chromatographically. All four oligosaccharides were hydrolysed faster at the (1-6) branch, than at the (1-3) branch, but a high branch specificity was observed only with the glycan 4. The saccharides 1 and 7 resembled each other in the kinetics of the enzyme-catalysed release of their two non-reducing N-acetylglucosamine units, but the glycan 10 was rather different. The partial digestions made it possible to obtain radiolabelled GlcNAc beta 1-6Gal, GlcNAc beta 1-6Gal beta 1-OCH3, GlcNAc beta 1-6Gal beta 1-4Glc, and, in particular, GlcNAc beta 1-6Gal beta 1-4GlcNAc.  相似文献   

13.
Ehrlich ascites tumor cells and ascitic fluid were assayed for glycosidase activity. alpha-Galactosidase and beta-galactosidase, alpha- and beta-mannosidase, alpha-N-acetylgalactosaminidase, and beta-N-acetylglucosaminidase activities were detected using p-nitrophenyl glycosides as substrates. alpha-Galactosidase and alpha-N-acetylgalactosaminidase were isolated from Ehrlich ascites tumor cells on epsilon-aminocaproylgalactosylamine-Sepharose. alpha-Galactosidase was purified 160,000-fold and was free of other glycosidase activities. alpha-N-Acetylgalactosaminidase was also purified 160,000-fold but exhibited a weak alpha-galactosidase activity which appears to be inherent in this enzyme. Substrate specificity of the alpha-galactosidase was investigated with 12 substrates and compared with that of the corresponding coffee bean enzyme. The pH optimum of the Ehrlich cell alpha-galactosidase centered near 4.5, irrespective of substrate, whereas the pH optimum of the coffee bean enzyme for PNP-alpha-Gal was 6.0, which is 1.5 pH units higher than that for other substrates of the coffee bean enzyme. The reverse was found for alpha-N-acetylgalactosaminidase: the pH optimum for the hydrolysis of PNP-alpha-GalNAc was 3.6, lower than the pH 4.5 required for the hydrolysis of GalNAc alpha 1,3Gal. Coffee bean alpha-galactosidase showed a relatively broad substrate specificity, suggesting that it is suited for cleaving many kinds of terminal alpha-galactosyl linkages. On the other hand, the substrate specificity of Ehrlich alpha-galactosidase appears to be quite narrow. This enzyme was highly active toward the terminal alpha-galactosyl linkages of Ehrlich glycoproteins and laminin, both of which possess Gal alpha 1, 3Gal beta 1,4GlcNAc beta-trisaccharide sequences. The alpha-N-acetylgalactosaminidase was found to be active toward the blood group type A disaccharide, and trisaccharide, and glycoproteins with type A-active carbohydrate chains.  相似文献   

14.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

15.
Enzymatic transglycosylation using p-nitrophenyl alpha-D-rhamnopyranoside as the glycosyl donor and 6equiv of ethyl 1-thio-alpha-D-rhamnopyranoside as the glycosyl acceptor yielded a D-rhamnooligosaccharide derivative. The reaction was catalyzed by jack bean alpha-mannosidase in a 1:1 (v/v) mixture of 0.1 M sodium citrate buffer (pH4.5)-MeCN at 25 degrees C. The enzyme exhibited high catalytic activity for the reaction, to afford in 32.1% isolated yield (based on donor substrate) ethyl alpha-D-rhamnopyranosyl-(1-->2)-1-thio-alpha-D-rhamnopyranoside, which is a derivative of the common oligosaccharide unit of the antigenic lipopolysaccharides from Pseudomonas.  相似文献   

16.
Glucosidase II was purified approximately 1700-fold to homogeneity from Triton X-100 extracts of mung bean microsomes. A single band with a molecular mass of 110 kDa was seen on sodium dodecyl sulfate gels. This band was susceptible to digestion by endoglucosaminidase H or peptide glycosidase F, and the change in mobility of the treated protein indicated the loss of one or two oligosaccharide chains. By gel filtration, the native enzyme was estimated to have a molecular mass of about 220 kDa, suggesting it was composed of two identical subunits. Glucosidase II showed a broad pH optima between 6.8 and 7.5 with reasonable activity even at 8.5, but there was almost no activity below pH 6.0. The purified enzyme could use p-nitrophenyl-alpha-D-glucopyranoside as a substrate but was also active with a number of glucose-containing high-mannose oligosaccharides. Glc2Man9GlcNAc was the best substrate while activity was significantly reduced when several mannose residues were removed, i.e. Glc2Man7-GlcNAc. The rate of activity was lowest with Glc1Man9GlcNAc, demonstrating that the innermost glucose is released the slowest. Evidence that the enzyme is specific for alpha 1,3-glucosidic linkages is shown by the fact that its activity on Glc2Man9GlcNAc was inhibited by nigerose, an alpha 1,3-linked glucose disaccharide, but not by alpha 1,2 (kojibiose)-, alpha 1,4(maltose)-, or alpha 1,6 (isomaltose)-linked glucose disaccharides. Glucosidase II was strongly inhibited by the glucosidase processing inhibitors deoxynojirimycin and 2,6-dideoxy-2,6-imino-7-O-(beta-D- glucopyranosyl)-D-glycero-L-guloheptitol, but less strongly by castanospermine and not at all by australine. Polyclonal antibodies prepared against the mung bean glucosidase II reacted with a 95-kDa protein from suspension-cultured soybean cells that also showed glucosidase II activity. Soybean cells were labeled with either [2-3H]mannose or [6-3H]galactose, and the glucosidase II was isolated by immunoprecipitation. Essentially all of the radioactive mannose was released from the protein by treatment with endoglucosaminidase H. The labeled oligosaccharide(s) released by endoglucosaminidase H was isolated and characterized by gel filtration and by treatment with various enzymes. The major oligosaccharide chain on the soybean glucosidase II appeared to be a Man9(GlcNAc)2 with small amounts of Glc1Man9(GlcNAc)2.  相似文献   

17.
Lec23 Chinese hamster ovary (CHO) cells have been shown to possess a unique lectin resistance phenotype and genotype compared with previously isolated CHO glycosylation mutants (Stanley, P., Sallustio, S., Krag, S. S., and Dunn, B. (1990) Somatic Cell Mol. Genet. 16, 211-223). In this paper, a biochemical basis for the lec23 mutation is identified. The carbohydrates associated with the G glycoprotein of vesicular stomatitis virus (VSV) grown in Lec23 cells (Lec23/VSV) were found to possess predominantly oligomannosyl carbohydrates that bound strongly to concanavalin A-Sepharose, eluted 3 sugar eq beyond a Man9GlcNAc marker oligosaccharide on ion suppression high pressure liquid chromatography, and were susceptible to digestion with jack bean alpha-mannosidase. Monosaccharide analyses revealed that the oligomannosyl carbohydrates contained glucose, indicating a defect in alpha-glucosidase activity. This was confirmed by further structural characterization of the Lec23/VSV oligomannosyl carbohydrates using purified rat mammary gland alpha-glucosidase I, jack bean alpha-mannosidase, and 1H NMR spectroscopy at 500 MHz. [3H]Glucose-labeled Glc3Man9GlcNAc was prepared from CHO/VSV labeled with [3H]galactose in the presence of the processing inhibitors castanospermine and deoxymannojirimycin. Subsequently, [3H]Glc2Man9GlcNAc was prepared by purified alpha-glucosidase I digestion of [3H]Glc3Man9GlcNAc. When these oligosaccharides were used as alpha-glucosidase substrates it was revealed that Lec23 cells are specifically defective in alpha-glucosidase I, a deficiency not previously identified among mammalian cell glycosylation mutants.  相似文献   

18.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

19.
Human colon carcinoma cell fucosyltransferase (FT) in contrast to the FTs of several human cancer cell lines, utilized GlcNAcbeta1,4GlcNAcbeta-O-Bn as an acceptor, the product being resistant to alpha1,6-L-Fucosidase and its formation being completely inhibited by LacNAc Type 2 acceptors. Further, this enzyme was twofold active towards the asialo agalacto glycopeptide as compared to the parent asialoglycopeptide. Only 60% of the GlcNAc moieties were released from [14C]fucosylated asialo agalacto triantennary glycopeptide by jack bean beta-N-acetylhexosaminidase. These alpha1,3-L-fucosylating activities on multiterminal GlcNAc residues and chitobiose were further examined by characterizing the products arising from fetuin triantennary and bovine IgG diantennary glycopeptides and their exoglycosidase-modified derivatives using lectin affinity chromatography. Utilization of [14C]fucosylated glycopeptides with cloned FTs indicated that Lens culinaris lectin and Aleuria aurantia lectin (AAL) required, respectively, the diantennary backbone and the chitobiose core alpha1,6-fucosyl residue for binding. The outer core alpha1,3- but not the alpha-1,2-fucosyl residues decreased the binding affinity of AAL. The AAL-binding fraction from [14C]fucosylated asialo fetuin, using colon carcinoma cell extract, contained 60% Endo F/PNGaseF resistant chains. Similarly AAL-binding species from [14C]fucosylated TFA-treated bovine IgG using colon carcinoma cell extract showed significant resistance to endo F/PNGaseF. However, no such resistance was found with the corresponding AAL non- and weak-binding species. Thus colon carcinoma cells have the capacity to fucosylate the chitobiose core in glycoproteins, and this alpha1,3-L-fucosylation is apparently responsible for the AAL binding of glycoproteins. A cloned FT VI was found to be very similar to this enzyme in acceptor substrate specificities. The colon cancer cell FT thus exhibits four catalytic roles, i.e., alpha1,3-L-fucosylation of: (a) Galbeta1,4GlcNAcbeta-; (b) multiterminal GlcNAc units in complex type chain; (c) the inner core chitobiose of glycopeptides and glycoproteins; and (d) the nonreducing terminal chiotobiose unit.  相似文献   

20.
Incubation of UDP-GlcNAc and radiolabeled GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) with human serum resulted in the formation of the branched hexasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (2) in yields of up to 22.2%. The novel reaction represents midchain branching of the linear acceptor; the previously known branching reactions of oligo-(N-acetyllactosaminoglycans) involve the nonreducing end of the growing saccharide chains. The structure of 2 was established by use of appropriate isotopic isomers of it for degradative experiments. The hexasaccharide 2 was cleaved by an exhaustive treatment with jack bean beta-N-acetylhexosaminidase, liberating two GlcNAc units and the tetrasaccharide Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (3). Endo-beta-galactosidase from Bacteroides fragilis cleaved 2 at one site only, yielding the disaccharide GlcNAc beta 1-3Gal (4) and the branched tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (5). The structure of 5 was established by partial acid hydrolysis and subsequent identification of the disaccharide GlcNAc beta 1-6Gal (6), together with the trisaccharides GlcNAc beta 1-6Gal beta 1-4GlcNAc (7) and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (8) among the cleavage products. Galactosylation of 2 with bovine milk beta 1,4-galactosyltransferase and UDP-[6-3H]Gal gave the octasaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3 Gal beta 1-4GlcNAc beta 1-3([6-3H]-Gal beta 1-4GlcNAc beta 1-6)[U-14C] Gal beta 1-4GlcNAc (17), which could be cleaved with endo-beta-galactosidase into the trisaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3Gal (18) and the branched pentasaccharide GlcNAc beta 1-3-([6-3H]Gal beta 1-4GlcNAc beta 1-6) [U-14C]Gal beta 1-4GlcNAc (19). Partial hydrolysis of 2 with jack-bean beta-N-acetylhexosaminidase gave the linear pentasaccharide 1 and the branched pentasaccharide Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (20). The serum beta 1,6-GlcNAc transferase catalyzed also the formation of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (11) from UDP-GlcNAc and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (10). The pentasaccharide Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (16), too, served as an acceptor for the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号