首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Submitochondrial particles prepared from beef heart are capable of oxidizing TPNH, in the absence of added DPN, at a rate of approximately 50 nmoles/min × mg protein at 30°. TPNH oxidation by these particles occurs through the respiratory chain as evidenced from TPNH-induced reduction of the cytochromes and the inhibitory effects of rotenone, piericidin A, amytal, antimycin A and cyanide. The latter studies have indicated that the site of TPNH interaction with the respiratory chain is on the substrate side of the rotenone-piericidin block and close to that of DPNH.  相似文献   

10.
11.
12.
13.
14.
15.
The light-dependent quenching of 9-aminoacridine fluorescence was used to monitor the state of the transthylakoid proton gradient in illuminated intact chloroplasts in the presence or absence of external electron acceptors. The absence of appreciable light-dependent fluorescence quenching under anaerobic conditions indicated inhibition of coupled electron transport in the absence of external electron acceptors. Oxygen relieved this inhibition. However, when DCMU inhibited excessive reduction of the plastoquinone pool in the absence of oxygen, coupled cyclic electron transport supported the formation of a transthylakoid proton gradient even under anaerobiosis. This proton gradient collapsed in the presence of oxygen. Under aerobic conditions, and when KCN inhibited ribulose bisphosphate carboxylase and ascorbate peroxidase, fluorescence quenching indicated the formation of a transthylakoid proton gradient which was larger with oxygen in the Mehler reaction as electron acceptor than with methylviologen at similar rates of linear electron transport. Apparently, cyclic electron transport occured simultaneously with linear electron transport, when oxygen was available as electron acceptor, but not when methylviologen accepted electrons from Photosystem I. The ratio of cyclic to linear electron transport could be increased by low concentrations of DCMU. This shows that even under aerobic conditions cyclic electron transport is limited in isolated intact chloroplasts by excessive reduction of electron carriers. In fact, P700 in the reaction center of Photosystem I remained reduced in illuminated isolated chloroplasts under conditions which resulted in extensive oxidation of P700 in leaves. This shows that regulation of Photosystem II activity is less effective in isolated chloroplasts than in leaves. Assuming that a Q-cycle supports a H+/e ratio of 3 during slow linear electron transport, vectorial proton transport coupled to Photosystem I-dependent cyclic electron flow could be calculated. The highest calculated rate of Photosystem I-dependent proton transport, which was not yet light-saturated, was 330 mol protons (mg chlorophyll h)–1 in intact chloroplasts. If H+/e is not three but two proton transfer is not 330 but 220 mol (mg Chl H)–1. Differences in the regulation of cyclic electron transport in isolated chloroplasts and in leaves are discussed.  相似文献   

16.
17.
18.
In vitro incubation of isolated chloroplasts from young olive tree leaves ( Olea europaea L. cv. Marteño) in acetate-1-14C showed a high labelling of saturated fatty acids (palmitic + stearic) and, above all, of the monounsatured ones (oleic); the low biosynthetic rate of α-linolenic acid being noteworthy. These fatty acids are mainly found as free ones, or incorporated in mono-and diglyceride molecules. Phosphoand galactolipids, the most abundant acyl-lipid components of chloroplast lamellae, showed low incorporation rates. The fatty acid synthesis by isolated chloroplasts depends on exogenous CoA, ATP, NADPH and, especially, on added ACP (acyl carrier protein) preparation from Escherichia coli , whereas it was strongly inhibited by Triton X-100.
In vivo experiments with acetate-1-14C infiltration into young excised leaves showed a high labelling of chloroplast phospholipids, but a low 14C incorporation into galactolipids, a remarkable feature because these latter are main components of chloroplast lamellae. The high biosynthetic rate of α-linolenic acid is noteworthy and appears mainly linked to monogalactosyldiglycerides. Also the low incorporation of saturated fatty acids to neutral lipids is remarkable. The low in vitro synthesis of α-linolenic acid in comparison with that of the in vivo conditions, suggests the existence of a cooperation between chloroplasts and other parts of the cell to carry out the synthesis of this compound.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号