首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Even though it is widely accepted that bacterioplankton growth in lakes and marine ecosystems is determined by the trophic status of the systems, knowledge of the relationship between nutrient concentrations and growth of particular bacterial species is almost nonexistent. To address this question, we performed a series of culture experiments with water from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat (northern Red Sea). In the initial water samples, the proportion of CFU was typically <0.002% of the 4',6'-diamidino-2-phenylindole (DAPI) counts. During incubation until the early stationary phase, the proportion of CFU increased to 20% of the DAPI counts and to 2 to 15% of the DAPI counts in unenriched lake water and seawater dilution cultures, respectively. Sequencing of the 16S ribosomal DNA of colony-forming bacteria in these cultures consistently revealed an abundance of alpha-proteobacteria, but notable phylogenetic differences were found at the genus level. Marine dilution cultures were dominated by bacteria in the Roseobacter clade, while lake dilution cultures were dominated by bacteria affiliated with the genera Sphingomonas and CAULOBACTER: In nutrient (glucose, ammonium, phosphate) addition experiments the CFU comprised 20 to 83% of the newly grown cells. In these incubation experiments fast-growing gamma-proteobacteria dominated; in the marine experiments primarily different Vibrio and Alteromonas species appeared, while in the lake water experiments species of the genera Shewanella, Aeromonas, and Rheinheimera grew. These results suggest that major, but different, gamma-proteobacterial genera in both freshwater and marine environments have a preference for elevated concentrations of nutrients and easily assimilated organic carbon sources but are selectively outcompeted by alpha-proteobacteria in the presence of low nutrient concentrations.  相似文献   

2.
We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4′,6′-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% ± 7.9% and 14.2% ± 10.2% of the DAPI cell counts were detected by probes specific for α- and β-Proteobacteria. These proportions increased to 12.0% ± 3.3% and 54.0% ± 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% ± 1.4% and 41.1% ± 8.4%, indicating a clear dominance of β-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. γ-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the α-Proteobacteria. In addition, with three probes highly specific for close relatives of the β-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the β-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the aggregate-associated bacteria from the surrounding water. This stage was followed by a period of 1 to 3 days during which dissolved amino acids were released into the surrounding water, paralleled by an increasing dominance of β-Proteobacteria. Hence, our results show that lake snow aggregates are inhabited by a community dominated by a limited number of α- and β-Proteobacteria, which undergo a distinct succession. They successively decompose the amino acids bound in the aggregates and release substantial amounts into the surrounding water during aging and sinking.  相似文献   

3.
We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (~10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.  相似文献   

4.
5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号