首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Landuse changes, including deforestation, agriculture, and urbanization, have coincided with an increase in vector-borne diseases worldwide. Landuse changes may alter mosquito populations by modifying the characteristics of aquatic larval habitats, but we still poorly understand the physical, chemical, and biological factors involved. We examined a total of 81 mosquito larval habitats for immature mosquitoes and 17 environmental variables in native forest, pastureland, and urbanland, at three locations in the Kapiti region, New Zealand. Significantly higher immature mosquito densities, predominantly of the endemic species Cx. pervigilans, were collected from urbanland and pastureland compared to native forest. Urbanland and pastureland habitats were mostly artificial containers compared to ground pools in native forest. Generalized linear modeling (GLM) revealed nine environmental variables that were significantly different between landuses. Of these variables, mosquito density was significantly (positively) correlated with bacteria and dissolved organic carbon. When location and date were controlled for in GLM, mosquito density was (negatively) related to the presence of vegetation and combined predators. The findings of this study support those from prior surveys in warmer climates suggesting greater mosquito-borne disease risk in anthropogenically-modified environments because of ecosystem disruption. Unlike most previous field-based work, this study suggests that in addition to habitat type, the presence of vegetation, water quality, and predators are also associated with mosquito density and may be involved in causal mechanisms. Urban containers and stock drinking troughs had high mosquito densities, suggesting that an initial step in directing control operations should be to focus on these habitats.  相似文献   

2.
3.
4.
5.
Dispersal by frugivorous birds facilitates invasion by many exotic plants. We measured the seed rain of ornithochorous native and exotic plants at three habitats of a fragmented landscape of the northeastern United States for 1 year. We studied maple-beech forests, old fields, and abandoned conifer plantations. Across all sites we collected 2,196 ornithochorous seeds, including seeds from six exotic species and 10 native species. The majority (90%) of collected seeds were from exotic species. Seed dispersal was broadly similar among habitats, though seed rain of exotic species was higher in old fields than forested habitats. Seed rain was not strongly influenced by artificial perches for most species. However, seeds of exotic species were more commonly found in traps under an artificial perch in old fields. Seed rains for the exotic Elaeagnus umbellata, Rhamnus cathartica, and Rosa multiflora were positively associated with local density of mature plants. Seed rain of R. cathartica was positively associated with abundance of seedlings but not saplings, suggesting that post-dispersal mortality was important. Seed dispersal of the exotic Lonicera spp. was high in all habitats, accounting for 66% of all seeds collected. With the exception of Lonicera spp., seed rain of common exotic invaders was affected by the abundance of seed sources, and these species might be effectively controlled by elimination of local fruiting plants. Fruits of Lonicera morrowii, which has extensively invaded our area, are apparently a common component in the diet of frugivores.  相似文献   

6.
《Acta Oecologica》2000,21(3):213-222
This study quantifies the invertebrate fauna found on broom, Cytisus scoparius, L. (Link), in two countries where it grows as a native plant (France and England) and two countries where it grows as an alien plant (New Zealand and Australia). The data are used to test three hypotheses concerning the predicted differences in invertebrate community structure in native versus exotic habitats: (1) Are generalist phytophages dominant in exotic habitats and specialist phytophages dominant in native habitats? (2) Are there empty phytophage niches in exotic habitats? (3) As a plant species accumulates phytophages, do these in turn accumulate natural enemies? The broom fauna was sampled at five sites in each country by beating five broom bushes per site. The sampling efficiency of beating was quantified at one field site and it was shown to collect 87 % of invertebrate abundance, 95 % of invertebrate biomass and 100 % of phytophagous species found on the branches. Generalist phytophages were dominant on broom in exotic habitats and specialists dominant on broom in the native habitats. Thus, the two countries where broom grows as a native plant had higher numbers of total phytophage species and a higher abundance of specialist phytophages per bush. There was no significant difference in the average abundance of generalist phytophage species found per bush in native and alien habitats. Phytophages were assigned to seven feeding niches: suckers, root feeders, external chewers, flower feeders, seed feeders, miners and pollen feeders. Empty niches were found in the exotic habitats; species exploiting structurally specific parts of the host plant, such as flowers and seeds, were absent in the countries where broom grows as an alien plant. The pattern of niche occupancy was similar between native and exotic habitats when just the generalist phytophages were considered. As phytophage abundance and biomass increased, there were concomitant increases in natural enemy abundance and biomass. Thus, it appears that as plants accumulate phytophages, the phytophages in turn accumulate natural enemies and a food web develops around the plant. Moreover, in the native countries, the history of association between the natural enemies and their prey has been sufficient for specialist predators and parasitoids, feeding on the specialist phytophages, to have evolved.  相似文献   

7.
8.
9.
Abstract The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of < 6 L (flower vases) were the predominant breeding habitats, to compare various measures of the productivity of sunlit and shaded containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water‐filled containers (100 sunlit and 100 shaded), out of ~ 3738 containers present (~ 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [χ2 = 17.6, P < 0.001]; Cx pipiens: 6.3% vs. 1.8% [χ2 = 24, P < 0.001]). However, the number and the density of immatures per infested container and the number of pupae per pupa‐positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting condition. The maximum CI and total pupal counts occurred in March for Ae. aegypti and in January and February for Cx pipiens. The estimated peak abundance of pupae in the whole cemetery reached a total of ~ 4388 in the middle of March for Ae. aegypti and ~ 1059 in the middle of January for Cx pipiens. Spearman’s correlations between monthly total productivity and monthly CI were significant at P < 0.001 for Ae. aegypti (rs = 0.975) and P < 0.01 for Cx pipiens (rs = 0.869). Our findings indicate that the efficacy of control campaigns against the two most important mosquito vectors in temperate Argentina could be improved by targeting containers in shaded areas, with maximum effort during species‐specific times of year when pupal productivity is at its peak.  相似文献   

10.
Exotic species can invade and establish new habitats both as a result of their own traits, and as a result of the characteristics of the environment they invade. Here, we show that the abundance of the invasive submerged aquatic plant, Myriophyllum spicatum (Eurasian watermilfoil) is highly dependent on the conditions of the environment in a mesocosm experiment. M. spicatum is allelopathic towards epiphytic algae, and in the absence of algivorous snails, we found that the abundance of both algae and M. spicatum significantly increased with experimentally increased nutrient loading, while the abundance of native submerged macrophytes declined. However, when snails were present, snail biomass increased with increasing nutrient loading, and M. spicatum biomass was consistently low while native submerged macrophyte biomass was consistently high. Our results stress the importance of the interaction between species traits and environmental conditions when considering the invasiveness of certain exotic species and the invasibility of certain environments.  相似文献   

11.
Spartina anglica is an exotic perennial grass that can rapidly colonise the intertidal zone of temperate estuaries and lagoons. Consequently, there is considerable concern about its impact on estuarine flora and fauna. This study provides the first investigation of ecological impacts by S. anglica in Australia. The objective was to investigate the impacts of S. anglica on benthic macroinvertebrate communities inhabiting mudflat and native saltmarsh habitats at Little Swanport estuary, Tasmania. The null hypothesis that species richness and species abundance of benthic macroinvertebrates in exotic S. anglica marsh does not differ from adjacent native saltmarsh and mudflat habitats was tested. Eighteen species and 3716 macroinvertebrates were collected from 60 intertidal core samples in three habitats. Species richness, total abundance of invertebrates, crustacean abundance and mollusc abundance of mudflat communities were significantly (P < 0.05) lower when compared to those inhabiting adjacent S. anglica marsh and native saltmarsh. However, species richness and total abundance of invertebrates of native saltmarsh and S. anglica marsh did not differ significantly. Ordination of macroinvertebrate data clearly separated mudflat sites from vegetated sites but showed remarkable similarity between exotic and native vegetated sites.  相似文献   

12.
The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.  相似文献   

13.
Aim Water and nutrient availability are major limits to productivity in semi‐arid ecosystems; hence, ecological restoration often focuses on conserving or concentrating soil resources. By contrast, nutrient enrichment can promote invasion by exotic annuals, leading to restoration approaches that target reduction of soil nutrients. We aimed to explore potential biodiversity trade‐offs between these approaches by investigating relationships among soil nutrients, exotic annuals and native plant diversity and composition. In particular, we investigated the hypothesis that native plant diversity in semi‐arid to temperate woodlands reflects the productivity–diversity hypothesis, leading to hump‐backed relationships with soil nutrients such that (1) native plant diversity declines with increasing nutrient enrichment and (2) native diversity is limited at the lowest levels of soil fertility. Location Fragmented, long‐ungrazed Eucalyptus loxophleba subsp. loxophleba (York gum)–Acacia acuminata (jam) woodlands in the wheatbelt of South‐Western Australia. Methods We conducted stratified surveys of floristic composition and topsoil nutrient concentrations in 112 woodland patches. We used generalized linear models, structural equation models and ordinations to characterize relationships among soil nutrients, rainfall, exotic annuals and patch‐scale (100 m2) native plant composition and diversity. Results Patch‐scale native plant diversity declined strongly with increasing exotic abundance. This was partly related to elevated soil nutrient concentrations, particularly total nitrogen and available phosphorus. By contrast, there was little evidence for positive correlations between soil nutrients and native diversity, even at very low soil nutrient concentrations. Main conclusions Minimizing weed invasions is crucial for maximizing native plant diversity in E. loxophleba woodlands and could include nutrient‐depleting treatments without substantially compromising the functional capacity of soils to maintain native plant richness and composition. More broadly we emphasize that understanding relationships among ecosystem productivity, plant diversity and exotic invasions in the context of associated theoretical frameworks is fundamental for informing ecological restoration.  相似文献   

14.
Anthropogenic environmental change can increase exotic species performance and reduce native biodiversity. Nutrient enrichment may favor exotic plants with higher growth rates. Warming may increase the performance of exotic species from warmer native ranges and/or decrease the performance of locally adapted native species. However, community level impacts of nutrient enrichment and warming may depend on their combined effects on individual species and species interactions. We conducted a factorial 11-month field experiment that manipulated 1) plant origin: native, exotic (species from warmer and nutrient rich habitats), or native-&-exotic; 2) nutrients: ambient or high; and 3) temperature: ambient, +1 °C, or +2 °C. Elevated nutrients increased biomass and exotic plant proportional cover. Exotic diversity was higher with elevated nutrients. Native and exotic biomass responses to elevated nutrients were smaller in native-&-exotic treatments. Elevated nutrients increased the relative abundance of two exotic and decreased one exotic and three native species in native-&-exotic treatments. The predicted exotic to native biomass ratio was higher than the observed ratio, indicating that native plants reduced the potential growth of exotic plants in native-&-exotic treatments. Warming had no effect on plant biomass or diversity. These results suggest that nutrient enrichment increases the performance of some exotic plants and that it is critical to consider native and exotic plant interactions when assessing anthropogenic factor and exotic plant effects on native plant communities.  相似文献   

15.
16.
Abstract

Two surveys of Rarotonga, Cook Islands (21°20'S, 160°16'W) were made to determine the mosquito fauna of the island, and to identify the habitats required for breeding by searching for larvae. The first survey was made during the “dry season” in May 2001, the second during the “wet season” in February 2002. The mosquito fauna comprised four species Culex (Culex) quinquefasciatus Say, Culex (Culex) annulirostris Skuse, Aedes (Stego‐myia) aegypti (Linnaeus) and Aedes (Stegomyia) polynesiensis Marks. Larvae of the Culex species were most often found in larger natural and artificial water bodies. The Aedes species bred in both natural and artificial containers of all sizes. Ae. polynesiensis was the most widespread species, using natural holes in all regions as well as artificial containers in the urban areas. Most larvae of Ae. aegypti were located in small artificial containers. The two Aedes species are the vectors of dengue fever on the island. Mosquito control during outbreaks should specifically target the artificial containers preferred by Aedes sp. for breeding habitats.  相似文献   

17.
Exotic species are prominent constituents of fouling communities. If exotic fouling organisms colonize or compete better on a wider range of substrate types than native species, this may partially account for their high abundance in estuaries and bays. We used four artificial and four naturally occurring substrate types to compare initial settlement and percent cover of native and exotic fouling species through six months of community development. Both the identity of common taxa and the total number of species colonizing artificial versus natural substrate types were similar. Despite the similarities in species richness, relative abundance patterns between natural and artificial substrate types varied, particularly as the communities developed. Native species were initially in equal abundance on natural and artificial substrate types. Initially, the two most common exotic species, the colonial tunicates, Botrylloides violaceus Ritter and Forsyth and Botryllus schlosseri (Pallas), were also in similar, but low, abundance on artificial and natural substrates. As the communities developed, there was little change in abundance of exotic or native species on natural substrates. However, on artificial substrates the exotic tunicates increased dramatically and native species declined in abundance. Artificial surfaces may provide a novel context for competitive interactions giving exotic species a more “level playing field” in an environment for which they otherwise might not be as well adapted compared to long-resident native species. Additions of artificial substrates to nearshore environments may disproportionately favor exotic species by increasing local sources of exotic propagules to colonize all types of substrates.  相似文献   

18.
Invasion of habitats by exotic shrubs is often associated with a decrease in the abundance of native species, particularly trees. This is typically interpreted as evidence for direct resource competition between the invader and native species. However, this may also reflect indirect impacts of the exotic shrubs through harboring high densities of seed predators––known as apparent competition. Here I present data from separate seed predation experiments conducted with two shrub species exotic to North America; Rosa multiflora, an invader of abandoned agricultural land, and Lonicera maackii, an invader of disturbed or secondary forest habitats. Both experiments showed significantly greater risks of seed predation for tree seeds located under shrub canopies when compared to open microhabitats within the same site. These results indicate the potential importance of indirect impacts of exotic species invasions on native biota in addition to the direct impacts that are typically the focus of research.  相似文献   

19.
We conducted a field survey for flatworms to select species as potential biological control agents against Aedes aegypti and Culex pipiens (Diptera, Culicidae) breeding in artificial containers. Laboratory experiments were performed to determine the daily predation rate, differential predation on each mosquito larval instar, selective predation on either A. aegypti or C. pipiens, and predator tolerance to water from artificial containers. Girardia anceps (Tricladida, Paludicola, Dugesiidae), Mesostoma ehrenbergii and Bothromesostoma cf. evelinae (Rhabdocoela, Typhloplanoida, Typhloplanidae) were found in temporary puddles and permanent pools. In the laboratory, they killed between 52% and 100% of immature mosquitoes coexisting in the same habitat. No preference of flatworms for mosquito preys was detected. Predation rate was related to predator size and instar of preys. Girardia anceps and B. evelinae survived after a dry period and when re-flooding occurred, they laid eggs. Tolerance to water from artificial containers was highest in G. anceps and this species could be a suitable predator to reduce mosquito populations from artificial containers using an inoculative approach.  相似文献   

20.
Plantation forests are of increasing importance worldwide for wood and fibre production, and in some areas they are the only forest cover. Here we investigate the potential role of exotic plantations in supporting native forest-dwelling carabid beetles in regions that have experienced extensive deforestation. On the Canterbury Plains of New Zealand, more than 99% of the previous native forest cover has been lost, and today exotic pine (Pinus radiata) plantations are the only forest habitat of substantial area. Carabids were caught with pitfall traps in native kanuka (Kunzea ericoides) forest remnants and in a neighbouring pine plantation, grassland and gorse (Ulex europaeus) shrubland. A total of 2,700 individuals were caught, with significantly greater abundance in traps in young pine, grassland and gorse habitats than in kanuka and older pine. Rarefied species richness was greatest in kanuka, a habitat that supported two forest specialist species not present in other habitat types. A critically endangered species was found only in the exotic plantation forest, which also acts as a surrogate habitat for most carabids associated with kanuka forest. The few remaining native forest patches are of critical importance to conservation on the Canterbury Plains, but in the absence of larger native forest areas plantation forests are more valuable for carabid conservation than the exotic grassland that dominates the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号