首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new approach is presented which allows the in vivo visualization of individual chromosome territories in the nuclei of living human cells. The fluorescent thymidine analog Cy3-AP3-dUTP was microinjected into the nuclei of cultured human cells, such as human diploid fibroblasts, HeLa cells and neuroblastoma cells. The fluorescent analog was incorporated during S-phase into the replicating genomic DNA. Labelled cells were further cultivated for several cell cycles in normal medium. This well-known scheme yielded sister chromatid labelling. Random segregation of labelled and unlabelled chromatids into daughter nuclei resulted in nuclei exhibiting individual in vivo detectable chromatid territories. The territories were composed of subcompartments with diameters ranging between approximately 400 and 800 nm which we refer to as subchromosomal foci. Time-resolved in vivo studies demonstrated changes of positioning and shape of territories and subchromosomal foci. The hypothesis that subchromosomal foci persist as functionally distinct entities was supported by double labelling of chromatin with CldU and IdU, respectively, at early and late S-phase and subsequent cultivation of corresponding cells for 5–10 cell cycles before fixation and immunocytochemical detection. This scheme yielded segregated chromatid territories with distinctly separated subchromosomal foci composed of either early- or late-replicating chromatin. The size range of subchromosomal foci was similar after shorter (2 h) and longer (16 h) labelling periods and was observed in nuclei of both living and fixed cells, suggesting their structural identity. A possible functional relevance of chromosome territory compartmentalization into subchromosomal foci is discussed in the context of present models of interphase chromosome and nuclear architecture. Received: 10 November 1997 / Accepted: 24 November 1997  相似文献   

3.
Chromosome distribution was analyzed in uncultured radial metaphase cells (corneal epithelium, testicular mitotic cells, cells in diakinesis, and cells in metaphase II) from the Chinese hamster. The hypothesis of random distribution was rejected at the 0.001 level (x 3 2 = 31.6). — Homologous association was observed for two pairs of chromosomes (3 and 10) in corneal epithelial cells. It was observed for all chromosomes in the testicular mitotic cells. Acrocentric association was observed in all four cell types. The chromosomes associated in four groups of similarly sized and shaped chromosomes. While group membership did not appear to vary, position within the group was highly variable. — An elevenpoint model of chromosome relationships was constructed from the data.  相似文献   

4.
5.
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.  相似文献   

6.
7.
8.
Chromosomes are compartmentalized into discrete chromosome territories during interphase in mammalian cells. A chromosome territory is generated by the tendency of chromatin to occupy the smallest shell volume, which is determined by the polymeric properties and interactions of the internal meshwork of the chromatin fiber. Here, we show that BAF53 knockdown by small interfering RNA interference led to the expansion of chromosome territories. This was accompanied by a reduction in chromatin compaction, an increase in the micrococcal nuclease sensitivity of the chromatin, and an alteration in H3-K9 and H3-K79 dimethylation. Interestingly, the BAF53 knockdown cells suffer a cell cycle defect. Despite the significant irregularity and decompaction of the polynucleosomes isolated from the BAF53 knockdown cells, the chromatin loading of H1 and core histones remained unaltered, as did the nucleosome spacing. The histone hyperacetylation and down-regulation of BRG-1, mBrm, and Tip49, the catalytic components of the SWI/SNF complex and the TIP60 complex, respectively, did not expand chromosome territories. These results indicate that BAF53 contributes to the polymeric properties and/or the internal meshwork interactions of the chromatin fiber probably via a novel mechanism.  相似文献   

9.
The anatomy of Latimeria chalumnae has figured prominently in discussions about tetrapod origins. While the gross anatomy of Latimeria is well documented, relatively little is known about its otic anatomy and ontogeny. To examine the inner ear and the otoccipital part of the cranium, a serial-sectioned juvenile coelacanth was studied in detail and a three-dimensional reconstruction was made. The ear of Latimeria shows a derived condition compared to other basal sarcopterygians in having a connection between left and right labyrinths. This canalis communicans is perilymphatic in nature and originates at the transition point of the saccule and the lagena deep in the inner ear, where a peculiar sense end organ can be found. In most gnathostomes the inner ears are clearly separated from each other. A connection occurs in some fishes, e.g. within the Ostariophysi. In the sarcopterygian lineage no connections between the inner ears are known except in the Actinistia. Some fossil actinistians show a posteriorly directed duct lying between the foramen magnum and the notochordal canal, similar to the condition in the ear of Latimeria, so this derived character complex probably developed early in actinistian history. Because some features of the inner ear of Latimeria have been described as having tetrapod affinities, the problem of hearing and the anatomy of the otical complex in the living coelacanth has been closely connected to the question of early tetrapod evolution. It was assumed in the past that the structure found in Latimeria could exemplify a transitional stage in otic evolution between the fishlike sarcopterygians and the first tetrapods in a functional or even phylogenetic way. Here the possibility is considered that the canalis communicans does not possess any auditory function but rather is involved in sensing pressure changes during movements involving the intracranial joint. Earlier hypotheses of a putative tympanic ear are refuted.  相似文献   

10.
Recently it has been shown that the gene-density correlated radial distribution of human 18 and 19 homologous chromosome territories (CTs) is conserved in higher primates in spite of chromosomal rearrangements that occurred during evolution. However, these observations were limited to apes and New World monkey species. In order to provide further evidence for the evolutionary conservation of gene-density-correlated CT arrangements, we extended our previous study to Old World monkeys. They comprise the remaining species group to be analyzed in order to obtain a comprehensive overview of the nuclear topology of human 18 and 19 homologous CTs in higher primates. In the present study we investigated four lymphoblastoid cell lines from three species of Old World monkeys by three-dimensional fluorescence in situ hybridization (3D-FISH): two individuals of Japanese macaque (Macaca fuscata), crab-eating macaque (Macaca fascicularis), and an interspecies hybrid individual between African green monkey (Cercopithecus aethiops) and Patas monkey (Erythrocebus patas). Our data demonstrate that gene-poor human 18 homologous CTs are located preferentially close to the nuclear periphery, whereas gene-dense human 19 homologous CTs are oriented towards the nuclear center in all cell lines analyzed. The gene-density-correlated positioning of human 18 and 19 homologous CTs is evolutionarily conserved throughout all major higher primate lineages, despite chromosomal inversions, fusions, fissions or reciprocal translocations that occurred in the course of evolution in these species. This remarkable preservation of a gene-density-correlated chromatin arrangement gives further support for a functionally relevant higher-order chromatin architecture.  相似文献   

11.
Summary In spite of Carl Rabl's (1885) and Theodor Boveri's (1909) early hypothesis that chromosomes occupy discrete territories or domains within the interphase nucleus, evidence in favor pf this hypothesis has been limited and indirect so far in higher plants and animals. The alternative possibility that the chromatin fiber of single chromosomes might be extended throughout the major part of even the whole interphase nucleus has been considered for many years. In the latter case, chromosomes would only exist as discrete chromatin bodies during mitosis but not during interphase. Both possibilities are compatible with Boveri's well established paradigm of chromosome individuality. Here we show that an active human X chromosome contained as the only human chromosome in a Chinese hamster x man hybrid cell line can be visualized both in metaphse plates and in interphase nuclei after in situ hybridization with either 3H- or biotin-labeled human genomic DNA. We demonstrate that this chromosome is organized as a distinct chromatin body throughout interphase. In addition, evidence for the territorial organization of human chromosomes is also presented for another hybrid cell line containing several autosomes and the human X chromosome. These findings are discussed in the context of our present knowledge of the organization and topography of interphase chromosomes. General applications of a strategy aimed at specific staining of individual chromosomes in experimental and clinical cytogenetics are briefly considered.  相似文献   

12.
Delta-crystallin, the major soluble protein component of the avian and reptilian eye lens, is homologous to the urea cycle enzyme argininosuccinate lyase (ASL). In duck lenses there are two delta crystallins, denoted delta1 and delta2. Duck delta2 is both a major structural protein of the lens and also the duck orthologue of ASL, an example of gene recruitment. Although 94% identical to delta2/ASL in the amino acid sequence, delta1 is enzymatically inactive. A series of hybrid proteins have been constructed to assess the role of each structural domain in the enzymatic mechanism. Five chimeras--221, 122, 121, 211, and 112, where the three numbers correspond to the three structural domains and the value of 1 or 2 represents the protein of origin, delta1 or delta2, respectively--were constructed and thermodynamically and kinetically analyzed. The kinetic analysis indicates that only domain 1 is crucial for restoring ASL activity to delta1 crystallin, and that amino acid substitutions in domain 2 may play a role in substrate binding. These results confirm the hypothesis that only one domain, domain 1, is responsible for the loss of catalytic activity in delta1. The thermodynamic characterization of human ASL (hASL) and duck delta1 and delta2 indicate that delta crystallins are slightly less stable than hASL, with the delta1 being the least stable. The deltaGs of unfolding are 57.25, 63.13, and 70.71 kcal mol(-1) for delta1, delta2, and hASL, respectively. This result was unexpected, and we speculate that delta crystallins have adapted to their structural role by adopting a slightly less stable conformation that might allow for enhanced protein-protein and protein-solvent interactions.  相似文献   

13.
Summary A composite linkage map of Brassica oleracea was developed from maps of four different populations, derived from 108 DNA, isozyme and morphological loci covering over 747 centimorgans in 11 linkage groups. Of these linkage groups, 8 were assigned to their respective chromosomes by alignment with gene synteny groups of B. oleracea. Distortions in segregation ratios increased with the level of divergence of the parents and were attributed to differentiation of parental chromosomes. Comparison of the individual maps demonstrates that the B. oleracea genome undergoes frequent chromosomal rearrangement, even at the subspecies level. Small inversions were the most frequent form of aberration followed by translocations. The former type of aberration could occur without a noticeable effect on meiotic behavior of chromosomes or on pollen fertility. The obvious deduction from the composite map is that a large fraction of the B. oleracea genome is duplicated, falling into three classes: randomly dispersed, linked-gene families, and blocks duplicated in non-homologous chromosomes. The genealogy of chromosomes sharing duplicated segments was formulated and indicates that B. oleracea is a secondary polyploid species derived from ancestral genome(s) of fewer chromosomes.  相似文献   

14.
Observations on the behavior of living hominoids show generic differences in the use and posture of the wrist joint. Both orang-utans and hylobatids usually use the wrist in suspensory behaviors. However, orang-utans emphasize markedly adducted and flexed wrist postures, while hylobatids emphasize violent forearm and wrist rotation. African apes, especially the gorilla, use the wrist more frequently than other hominoids for terrestrial quadrupedal weight-bearing. Humans use the wrist less frequently for supportive purposes than do other hominoids. These behavioral differences correspond to structural specializations in the proximal carpal joint of each of the hominoid genera. Although each of the hominoid genera has apparently modified its proximal carpal joint best to serve its characteristic behaviors, all hominoids share a unique proximal carpal joint that permits approximately 160ℴ of forearm rotation. The hylobatid proximal carpal joint is specialized in exhibiting a marked development of those structures limiting forearm rotation, but it is in most respects the least derived— that is, closest to the nonhominoid anthropoids. Chimpanzees show a proximal carpal joint that is more generalized than those of the other great apes but more derived than that of hylobatids. The human and gorilla proximal wrist joints, on the other hand, show marked modifications for weight-bearing in terrestrial behaviors. Orang-utans have the most derived proximal carpal joint, which in many respects parallels that of the slow-climbing nonhominoid primates. The comparative anatomy and structural specializations of the wrist joint support (a) an early divergence of hylobatids from the common hominoid stock, (b) a common ancestry for gorillas and humans separate from the other hominoids, and (c) a long independent evolutionary period for orang-utans since their divergence from the common hominoid stock, or one that was marked by strong selection pressures for wrist specializations. Unfortunately, the generalized condition of the chimpanzee’s wrist joint and the very derived condition of the orang-utan wrist provide uncertain evidence as to which of the two was first to diverge from the common hominoid stock. Identification of hominoid wrist specializations as reflecting real phylogenetic relationships or parallelisms depends on how well the phytogeny inferred from wrist morphology accords with those arrived at from the study of other systems.  相似文献   

15.
In the past few years, very rapid advances have been made in determining the primary structure of protein tyrosine phosphatases (PTPases). PTPase genes have now been isolated from bacteria, viruses, yeasts and insects as well as vertebrates. The cytosolic PTPases have a catalytic domain associated with various accessory domains that are believed to be involved in protein-protein interaction or subcellular localization. The transmembrane PTPases have either one or two cytoplasmic PTPase domains and an extracellular receptor-like structure. The existence of a large number of structurally diverse PTPases suggests that they play specific and crucial roles in signal transduction. In this article, the structural features of the PTPases from higher eukaryotes are reviewed.  相似文献   

16.
Analysis of localization of chromosomes 2, 3, and 6 of Calliphora erythrocephala Mg. in ovarian nurse cell nuclei with different chromatin structure has shown that the regions of DNA probe hybridization reduced with increasing chromatin compaction. Hybridization of DNA probes of chromosomes 3 and 6 to secondary reticular nuclei demonstrated that chromosomes retain their territories in the nuclei when the chromatin acquires a reticular structure. These results suggest regular organization of the chromosomal apparatus at all stages of the endomitotic cycle, including the stage of highly polyploid reticular nuclei. FISH of DNA probe of the chromosome 2 telomeric region to secondary reticular nuclei revealed a peripheral distribution of the signal. Zones of more intensive DNA probe hybridization have been distinguished. These zones probably are the regions of accumulation of telomeric and (or) centromeric chromosome regions.  相似文献   

17.
It is now generally accepted that chromosomes in the cell nucleus are organized in distinct domains, first called chromosome territories in 1909 by the great cytologist Theodor Boveri. Yet, even today chromosomes have remained enigmatic individuals, whose structures, arrangements and functions in cycling and post-mitotic cells still need to be explored in full detail. Whereas numerous recent reviews describe present evidence for a dynamic architecture of chromosome territories and discuss the potential significance within the functional compartmentalization of the nucleus, a comprehensive historical account of this important concept of nuclear organization was lacking so far. Here, we describe the early rise of chromosome territories within the context of the discovery of chromosomes and their fundamental role in heredity, covering a period from the 1870th to the early 20th century (part I, this volume). In part II (next volume) we review the abandonment of the chromosome territory concept during the 1950th to 1980th and the compelling evidence, which led to its resurrection during the 1970th to 1980th.  相似文献   

18.
Floral traits that reduce self-pollination in hermaphroditic plants have usually been interpreted as mechanisms that limit the genetic consequences of self-fertilization. However, the avoidance of sexual conflict between female and male function (self-interference) may also represent an important selection pressure for the evolution of floral traits, particularly in self-incompatible species. Here, we use experimental manipulations to investigate self-interference in Narcissus assoanus, a self-incompatible species with a stigma-height dimorphism in which the degree of spatial separation between sex organs (herkogamy) differs strikingly between the long- and short-styled morphs (hereafter L- and S-morphs). We predicted that weak herkogamy in the L-morph would cause greater self-pollination and hence self-interference. Experimental self-pollination reduced seed set when it occurred prior to, or simultaneously with, cross-pollination in the L-morph, but only if it occurred prior to cross-pollination in the S-morph. In the field, autonomous self-pollination was greater in the L-morph than the S-morph, but we found no evidence that self-interference reduced maternal or paternal fitness in either morph. One-day-old flowers of the L-morph have reduced stigma receptivity and hence exhibit protandry, whereas stigma receptivity and anther dehiscence are concurrent in the S-morph. This suggests that the two style morphs have alternative strategies for reducing self-interference: dichogamy in the L-morph and herkogamy in the S-morph. These results provide insight into the mechanisms that reduce sexual conflict in hermaphrodite plants and are of significance for understanding the evolution and maintenance of sexual polymorphisms.  相似文献   

19.
20.
Two basic patterns of exine ultrastructure are found in theCompositae, the caveate Helianthoid pattern and the non-caveate Anthemoid pattern. TheHeliantheae, Astereae, Inuleae, Sececioneae, Calenduleae andEupatorieae all have pollen with caveate exines. TheMutisiseae, Vernonieae andCardueae have predominately Anthemoid pollen. TheAnthemideae, Arctoteae andLactuceae have pollen with exines of both patterns. Recent investigations of pollen in theVernonieae suggest that these exine ultrastructures in the family have evolved in response to mechanical stresses on the wall which are caused by changes in volume of the grain as it loses or gains water from its environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号