首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unlike frogs and European tree frogs, the common toad Bufo bufo possesses a tongue lacking filiform papillae on its dorsal surface. Instead, the mucosal epithelium forms irregular, high folds, dividing the surface of the tongue into numerous separate compartments. At the bottom of those compartments occur openings of tubular glands and singular ciliated cells. In a strongly distended tongue the folds of mucosa disappear, and the regions of glandular orifices assume a shape of pocket-like recesses. The taste discs with an average diameter of 120 micrograms are localized on the top of markedly shortened fungiform papillae. The superficial layer of taste discs contains a single type of glandular supporting cells, which in part of discs show features suggesting their gradual dezintegration, probably related to the process of cellular turnover in gustatory organs.  相似文献   

2.
3.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

4.
H C Liu  J C Lee 《Acta anatomica》1982,112(4):310-320
The foliate papillae of the rabbit, rat and mouse were studied by scanning electron microscopy and histochemistry. The papillae consisted of folds and grooves located on the posterolateral margin of the tongue in front of the circumvallate papillae. The numbers of folds and taste buds varied among the three animals species. Scanning electron microscopy showed that in longitudinal sections the taste buds were oval in shape and their pores were surrounded by microvilli. The reaction product of alkaline phosphatase could only be demonstrated in the superficial epithelium of the rabbit as well as in the mouse foliate papillae, but it also diffused into the taste buds in the rat. The intensity and distribution of the reactions of adenosine triphosphatase, acetylcholinesterase and butyrylcholinesterase were identical to those reported by other investigators in spite of differences in animal species and histochemical techniques employed.  相似文献   

5.
Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

6.
Summary Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

7.
8.
A unique type of papillae is evident in the plicae glossoepiglotticae laterales of the tongue ofPan troglodytes troglodytes. Areas of occurrence show flat lobes of varying length with elongated miniature processes on their free tips. The function of these papillae is presumably the convection of liquid food into the pharynx (along with the lateral folds). Furthermore, it is assumed that the papillae are sensory organs which relay taste, temperature, pain, and pressure, similar to the papillae filiformes of the tongue of other mammalia (Kunze 1969). Free nerve fibres and nerve endings were found in both the epithelium and the connective-tissue. Nerve structures resembling the “Organs of Meissner” were also discovered in the subepithelial connective-tissue. Goblet cells are found in the surface layers in the epithelium of the papillae of the newborn. These are absent in the papillae of the adultPan troglodytes troglodytes. The secretion of the goblet cells functions as a mechanical and chemical protectant for the papillae.  相似文献   

9.
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.  相似文献   

10.
K Kobayashi 《Acta anatomica》1992,143(2):109-117
The three-dimensional relationship between the epithelial cell layer and the underlying connective tissue core (CTC) of the foliate papilla of the rabbit tongue was studied by scanning electron microscopy after removal of the epithelial cell layer. The foliate papillae were fixed in Karnovsky's fixative, and the epithelial cell layers were exposed to long-term hydrochloric acid treatment (3.5 N HCl for 2-3 weeks at room temperature). The foliate papillae consisted of ridges and grooves located on the posterolateral margin of the tongue. They appeared as linear projections or ridges of lingual mucosa roughly perpendicular to the longitudinal axis of the tongue. These projections or ridges were parallel to one another and separated by grooves. After removal of the epithelium, two kinds of CTC folds appeared: one was the septal fold of CTC which runs in the central portion under each linear projection or ridge, and the other consisted of two sheets of groove side folds of CTC which run along both sides of the former and face the groove side epithelium. It was revealed that there are two sheets of septal epithelial processes, and each of them fits in between each septal fold and groove side fold of CTC. Numerous taste buds were located in the groove side epithelia, and their pores faced the surface of the groove. On the hollow surfaces that appeared on the surface of the groove side fold of CTC after removal of the epithelial cells with taste buds, nerve-terminal-like structures were encountered. Some openings of the ducts of small lingual glands were arranged linearly on the underside of the basal portion of each groove side epithelium.  相似文献   

11.
The function of mouth organs in ruminants is connected with the process of rumination. To study morphofunctional relations, microstructures in tongues of 4- to 5-year old adult fallow deer were examined using scanning electron microscopy.When analyzing the tongue of the fallow deer, i.e. a ruminant classified as an intermediate mixed feeder between grass and roughage eaters, two processes were taken into account: (i) foraging and forage selecting, and (ii) chewing the cud during rumination to reduce particle size and improve digestibility.Microstructural results show that the above mentioned processes in fallow deer are important selection factors, which in the anterior part of tongue led to the development of clusters of fungiform papillae connected with preselection of food as well as a specific pattern of filiform papillae promoting increased adhesion of transported food. Massive and flattened conical papillae on the torus are arranged according to sideways jaw movements and are co-localized with flattened fungiform papillae and two rows of vallate papillae. Such an arrangement of papillae on the lingual torus presumably facilities distribution of ruminated food, with simultaneous transferring of taste signals about masticated food particles.  相似文献   

12.
In order to understand differences in taste sensitivities of taste bud cells between the anterior and posterior part of tongue, it is important to analyze the regional expression patterns of genes related to taste signal transduction on the tongue. Here we examined the expression pattern of a taste receptor family, the T1r family, and gustducin in circumvallate and fungiform papillae of the mouse tongue using double-labeled in situ hybridization. Each member of the T1r family was expressed in both circumvallate and fungiform papillae with some differences in their expression patterns. The most striking difference between fungiform and circumvallate papillae was observed in their co-expression patterns of T1r2, T1r3, and gustducin. T1r2-positive cells in fungiform papillae co-expressed T1r3 and gustducin, whereas T1r2 and T1r3 double-positive cells in circumvallate papillae merely expressed gustducin. These results suggested that in fungiform papillae, gustducin might play a role in the sweet taste signal transduction cascade mediated by a sweet receptor based on the T1r2 and T1r3 combination, in fungiform papillae.  相似文献   

13.
Development and morphological changes of human gustatory papillaeduring postovulatory weeks 6–15 have been studied usingscanning and transmission electron microscopy. The first papillaof the tongue appears around postovulatory week 6 in its caudalmidline near the foramen caecum. In contrast, the dorsal epitheliumof the anterior part of the tongue shows only small hillock-or papilla-like elevations from week 6 on, which comprise anaggregation of 5–20 epithelial cells. From week 7 on,most prominent fungiform papillae develop near the median sulcusand at the margins of the anterior part of the tongue. At theirtops, the first primitive taste pores are found around week10; these are often covered with processes of adjacent epithelialcells. Most pores, however, develop around weeks 14–15.The maturation of taste buds does not coincide with the appearanceof taste pores, since taste bud cells are not fully differentiatedin the observed period of time. Fungiform papillae are developedbefore filiform papillae, which do not occur within the first15 weeks of gestation. Fungiform papillae tend to grow betweenweeks 8 and 15 of gestation, whereas the size of vallate papillaeseems to be constant during this period. Chem. Senses 22: 601–612,1997.  相似文献   

14.
The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-);Spry2(-/-) embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.  相似文献   

15.
The morphological characteristics of bovine and equine gustatory lingual papillae are compared by scanning electron microscopy. The fungiform papillae in the cow have a shape that corresponds to their name, while in the horse, they almost do not emerge from the surface of the tongue. These papillae show taste pores in both species. The vallate papillae, four times larger in the horse than in the cow, show a complex organization of papillae and secondary grooves in the horse. In the cow, they occur single and are surrounded by a thick annular pad of lingual mucosa. Taste pores have been observed in the vallate papillae of both species, whereas in the foliate papillae, they are present only in the horse. A characteristic distribution of stratified scales and channeled tracts is observed on the surface of all gustatory papillae in both species. The possible functional importance of each type of gustatory papilla is discussed on the basis of their morphostructural features.  相似文献   

16.
The taste disc of the red-bellied toad Bombina orientalis (Discoglossidae) has been investigated by light and electron microscopy and compared with that of Rana pipiens (Ranidae). Unlike the frog, B. orientalis possesses a disc-shaped tongue that cannot be ejected for capture of prey. The taste discs are located on the top of fungiform papillae. They are smaller than those in Ranidae, and are not surrounded by a ring of ciliated cells. Ultrastructurally, five types of cells can be identified (mucus cells, wing cells, sensory cells, and both Merkel cell-like basal cells and undifferentiated basal cells). Mucus cells are the main secretory cells of the taste disc and occupy most of the surface area. Their basal processes do not synapse on nerve fibers. Wing cells have sheet-like apical processes and envelop the mucus cells. They contain lysosomes and multivesicular bodies. Two types of sensory cells reach the surface of the taste disc; apically, they are distinguished by either a brush-like arrangement of microvilli or a rod-like protrusion. They are invaginated into lateral folds of mucus cells and wing cells. In contrast to the situation in R. pipiens, sensory cells of B. orientalis do not contain dark secretory granules in the perinuclear region. Synaptic connections occur between sensory cells (presynaptic sites) and nerve fibers. Merkel cell-like basal cells do not synapse onto sensory cells, but synapse-like connections exist between Merkel cell-like basal cells (presynaptic site) and nerve fibers.  相似文献   

17.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

18.
We have studied by immunocytochemistry, the taste discs of the frog, Rana esculenta, with the aim of providing morphological and neurochemical data on the nitrergic system and of assessing the eventual presence of intrinsic neurons associated with the gustatory organs. In taste discs, antibodies against neuronal nitric oxide synthase (nNOS) revealed a positive immunoreaction in the taste receptor cell bodies and processes. The basal cells were also stained. All the fungiform papillae contained intragemmal nerve fibers showing nNOS immunoreactivity; these fiber were mainly located in the basal plexus. Immunoreactive nerve fibers were also visible at the periphery of the papilla-contacting ciliate cells, which form a ring around the taste disc. In conclusion, the findings obtained in this study suggest that the occurrence of nNOS-immunoreactivity in basal cells, taste cells and nerves might reflect a role for nitric oxide in taste mechanisms of Amphibia. The results may also sustain the physiological implication of NO as a molecule involved in the local target function of maintaining the taste bud mucosal integrity and in regulating the blood flow to the epithelium.  相似文献   

19.
The Florida manatee, Trichechus manatus latirostris, is a fully aquatic, threatened marine mammal for which increased understanding of their physiology, reproduction, and nutrition supports management decisions. Manatees may use taste to distinguish saltwater gradients, toxin detection, food assessment, and social interactions. This study sought to locate and characterize manatee taste buds comparing location, structure, number, and size to other species. Entire heads from manatees (6 males, 4 females) of various ages were obtained. The muzzle, tissue surrounding the nares, oral cavity, and epiglottis were examined grossly for pits and papillae. Tissues were examined using light and transmission electron microscopy. Within the predominant taste bud location, the tongue root, taste bud number was estimated using samples from four animals. The average number of taste buds within the tongue root was 11,534 (range 2,711–23,237) with sparse taste buds located on the soft palate and epiglottis. The location along the lateral surface of the tongue root and bordered by grooves, through which tastants could be easily transported, has functional significance. Large numbers of taste buds within the tongue root suggest that taste is an important component of manatee sensory systems and behavioral research would clarify this.  相似文献   

20.
We have earlier shown that the taste-bud-bearing fungiform papillaeform a stable pattern on the tongue of rats. In this study theeffect of removal of the fungiform papillae in rats was investigated.The fungiform papillae on a 10 x 5-mm area on one side of thetongue were removed after mapping of both sides under an operatingmicroscope. Serial sections of five rat tongues within 1 dayof biopsy showed that all but one papilla were gone. After 4,6 and 12 months an average of seven papillae with taste-budswere found in the operated area, compared to 20, 26 and 23 inthe controls. Comparison of tongue maps before and after theseperiods showed that papillae had not migrated from areas outsidethe area of the biopsies. To test the assumption that the extentof biopsy determined the amount of regeneration, only the upperpart of the papillae with their taste buds were removed in 15rats. Complete regeneration of papillae and taste buds was obtainedwithin 14 days. The function of the regenerated taste buds wastested by bilateral recording from the chorda tympani propernerves. No difference in response amplitudes was observed betweenthe sides. When, however, the whole papilla including its basewas removed, neither the papilla nor the taste-bud regenerated.The results show that the ability of the fungiform papilla andthe taste-bud to regenerate after removal of the papilla isrelated to the extent of the biopsy. If the entire papilla includingits base is removed, it will not regenerate. If only the upperpart is removed, complete regeneration of both papilla and itstaste-bud will occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号