共查询到20条相似文献,搜索用时 15 毫秒
1.
Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. 总被引:31,自引:5,他引:31
下载免费PDF全文

K Kotani K Yonezawa K Hara H Ueda Y Kitamura H Sakaue A Ando A Chavanieu B Calas F Grigorescu et al. 《The EMBO journal》1994,13(10):2313-2321
Insulin, IGF-1 or EGF induce membrane ruffling through their respective tyrosine kinase receptors. To elucidate the molecular link between receptor activation and membrane ruffling, we microinjected phosphorylated peptides containing YMXM motifs or a mutant 85 kDa subunit of phosphoinositide (PI) 3-kinase (delta p85) which lacks a binding site for the catalytic 110 kDa subunit of PI 3-kinase into the cytoplasm of human epidermoid carcinoma KB cells. Both inhibited the association of insulin receptor substrate-1 (IRS-1) with PI 3-kinase in a cell-free system and also inhibited insulin- or IGF-1-induced, but not EGF-induced, membrane ruffling in KB cells. Microinjection of nonphosphorylated analogues, phosphorylated peptides containing the EYYE motif or wild-type 85 kDa subunit (Wp85), all of which did not inhibit the association of IRS-1 with PI 3-kinase in a cell-free system, did not inhibit membrane ruffling in KB cells. In addition, wortmannin, an inhibitor of PI 3-kinase activity, inhibited insulin- or IGF-1-induced membrane ruffling. These results suggest that the association of IRS-1 with PI 3-kinase followed by the activation of PI 3-kinase are required for insulin- or IGF-1-induced, but not for EGF-induced, membrane ruffling. 相似文献
2.
Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation 总被引:1,自引:0,他引:1
Stachelscheid H Ibrahim H Koch L Schmitz A Tscharntke M Wunderlich FT Scott J Michels C Wickenhauser C Haase I Brüning JC Niessen CM 《The EMBO journal》2008,27(15):2091-2101
The lifelong self-renewal of the epidermis is driven by a progenitor cell population with high proliferative potential. To date, the upstream signals that determine this potential have remained largely elusive. Here, we find that insulin and insulin-like growth factor receptors (IR and IGF-1R) determine epidermal proliferative potential and cooperatively regulate interfollicular epidermal morphogenesis in a cell autonomous manner. Epidermal deletion of either IR or IGF-1R or both in mice progressively decreased epidermal thickness without affecting differentiation or apoptosis. Proliferation was temporarily reduced at E17.5 in the absence of IGF-1R but not IR. In contrast, clonogenic capacity was impaired in both IR- and IGF-1R-deficient primary keratinocytes, concomitant with an in vivo loss of keratin 15. Together with a reduction in label-retaining cells in the interfollicular epidermis, this suggests that IR/IGF-1R regulate progenitor cells. The expression of dominant active Rac rescued clonogenic potential of IR/IGF-1R-negative keratinocytes and reversed epidermal thinning in vivo. Our results identify the small GTPase Rac as a key target of epidermal IR/IGF-1R signalling crucial for proliferative potential and interfollicular morphogenesis. 相似文献
3.
Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31. 总被引:2,自引:0,他引:2
N J Pumphrey V Taylor S Freeman M R Douglas P F Bradfield S P Young J M Lord M J Wakelam I N Bird M Salmon C D Buckley 《FEBS letters》1999,450(1-2):77-83
Recent studies have shown that, in addition to its role as an adhesion receptor, platelet endothelial cell adhesion molecule 1/CD31 becomes phosphorylated on tyrosine residues Y663 and Y686 and associates with protein tyrosine phosphatases SHP-1 and SHP-2. In this study, we screened for additional proteins which associate with phosphorylated platelet endothelial cell adhesion molecule 1, using surface plasmon resonance. We found that, besides SHP-1 and SHP-2, platelet endothelial cell adhesion molecule 1 binds the cytoplasmic signalling proteins SHIP and PLC-gamma1 via their Src homology 2 domains. Using two phosphopeptides, NSDVQpY663TEVQV and DTETVpY686SEVRK, we demonstrate differential binding of SHP-1, SHP-2, SHIP and PLC-gamma1. All four cytoplasmic signalling proteins directly associate with cellular platelet endothelial cell adhesion molecule 1, immunoprecipitated from pervanadate-stimulated THP-1 cells. These results suggest that overlapping immunoreceptor tyrosine-based inhibition motif/immunoreceptor tyrosine-based activation motif-like motifs within platelet endothelial cell adhesion molecule 1 mediate differential interactions between the Src homology 2 containing signalling proteins SHP-1, SHP-2, SHIP and PLC-gamma1. 相似文献
4.
We have used SV40-transformed hepatocytes from insulin receptor-deficient mice (-/-) and normal mice (WT) to investigate the different abilities of insulin and IGF-1 receptors to stimulate glycogen synthesis. We report that insulin receptors are more potent than IGF-1 receptors in stimulating glycogen synthesis. Both receptors stimulate glycogen synthesis in a PI 3-kinase-dependent manner, but only the effect of insulin receptors is partially rapamycin-dependent. Insulin and IGF-1 receptors activate Akt to a similar extent, whereas GSK-3 inactivation in response to IGF-1 is considerably lower in both -/- and WT cells, compared to the effect of insulin in WT cells. The findings indicate that (i) the potency of insulin and IGF-1 receptors in stimulating glycogen synthesis correlates with their ability to inactivate GSK-3, (ii) the extent of GSK-3 inactivation does not correlate with the extent of Akt activation mediated by insulin or IGF-1 receptors, indicating that the effect of insulin on GSK-3 requires additional kinases, and (iii) the pathways required for insulin stimulation of glycogen synthesis in mouse hepatocytes are PI 3-kinase-dependent and rapamycin-sensitive. 相似文献
5.
The chicken IL-1 receptor: differential evolution of the cytoplasmic and extracellular domains. 总被引:2,自引:0,他引:2
The evolutionary conservation of a sequence or part of it can help to identify the essential functional and structural domains within a protein. We have cloned and characterised a cDNA coding for the type-I interleukin-1 receptor (IL-1R) of chick (ch) embryo fibroblasts. The comparison of the amino acid (aa) sequences of the avian with that of murine (m) and human (h) IL-1Rs shows a 60% homology. The intracellular domain is the most conserved region of the chIL-1R, showing 76-79% homology to the murine and human sequences, respectively. The striking conservation of the cytoplasmic region of the receptor is confirmed by its homology with the Toll receptor protein of Drosophila melanogaster. The alignment between the chicken and D. melanogaster proteins shows the presence of four aa blocks with more than 80% homology. The possible functional significance of this homology is discussed. The extracellular binding region of the receptor has a clearly recognisable immunoglobulin-like structure although the sequence divergence is higher than in the cytoplasmic domain. 相似文献
6.
7.
Engelberth J 《Biochemical Society transactions》2000,28(6):871-872
At least two different signalling pathways have been identified that result in clearly distinguishable volatile profiles in response to pathogens and herbivores in the lima bean Phaseolus lunatus. Alamethicin, a voltage-gated ion-channel-forming peptide from Trichoderma viride, is a potent inducer of volatile biosynthesis in the lima bean. Unlike elicitation with cellulysin or herbivore damage, which act through the jasmonic acid pathway and result in a complex pattern of volatile compounds, the emitted blend comprises only the two homoterpens, 4,11-dimethylnona-1,3,7-triene and 4,8,12-trimethyltrideca-1,3,7,11-tetraene, and methyl salicylate. Both pathways, represented by jasmonic acid and alamethicin, depend on lipid-derived signalling compounds, set off by the activation of a phospholipase A and further processing by lipoxygenase activity. The alamethicin-induced signal-transduction pathway interferes with the octadecanoid cascade, probably due to increased salicylic acid levels, resulting in an inhibition of the typical jasmonic acid-induced volatile profile. 相似文献
8.
Schroder WA Buck M Cloonan N Hancock JF Suhrbier A Sculley T Bushell G 《Cellular signalling》2007,19(6):1279-1289
Human Sin1 (SAPK-interacting protein 1) is a member of a conserved family of orthologous proteins that have an essential role in signal transduction in yeast and Dictyostelium. This study demonstrates that most Sin1 orthologues contain both a Raf-like Ras-binding domain (RBD) and a pleckstrin homology (PH) domain. These domains are functional in the human Sin1 protein, with the PH domain involved in lipid and membrane binding by Sin1, and the RBD able to bind activated H-and K-Ras. Sin1 and Ras co-immunoprecipitated and co-localised, showing that these proteins associate with each other in vivo. Overexpression of Sin1 inhibited the activation of ERK, Akt and JNK signalling pathways by Ras. In contrast, siRNA knockdown of endogenous Sin1 protein expression in HEK293 cells enhanced the activation of ERK1/2 by Ras. These data suggest that Sin1 is a mammalian Ras-inhibitor. 相似文献
9.
Scheidegger KJ James RW Delafontaine P 《The Journal of biological chemistry》2000,275(35):26864-26869
Low density lipoproteins (LDLs) play an important role in the pathogenesis of atherosclerosis. LDL has been shown to be mitogenic and proapoptotic for vascular smooth muscle cells. However, the mechanisms are poorly understood and may result from an alteration in intracellular mitogenic signaling either directly by LDL or indirectly through an autocrine effect involving growth factor secretion and/or growth factor receptor expression. Insulin-like growth factor-1 (IGF-1) is an autocrine/paracrine factor for vascular smooth muscle cells and has potent anti-apoptotic effects. Thus, we hypothesized that part of the proliferative responses to LDLs may be explained by its modulation of IGF-1 or IGF-1 receptor (IGF-1R) expression. Treatment of rat vascular smooth muscle cells with increasing doses of native LDL dose-dependently increased IGF-1 mRNA by up to 2.6-fold; however, native LDL had no effect on IGF-1R mRNA expression. In contrast, the same doses of oxidized LDL significantly reduced IGF-1 and IGF-1R mRNA by 80 and 61%, respectively, and reduced IGF-1 and IGF-1R protein expression by 63 and 46%. In addition, native and oxidized LDL significantly increased IGF-1-binding protein-2 and IGF-1-binding protein-4 expression as measured by Western ligand blot. Most interestingly, anti-IGF-1 antiserum completely inhibited LDL-induced but not serum-induced increase in (3)H-thymidine incorporation, indicating a requirement for IGF-1 in the LDL-stimulated mitogenic signaling pathway. In summary, these results suggest that native and oxidized LDLs have differential effects on IGF-1 and IGF-1R expression. Because IGF-1 is a potent survival factor for vascular smooth muscle cells, our findings suggest that moderately oxidized LDL may favor proliferation of smooth muscle cells, whereas oxidized LDL may contribute to plaque apoptosis by local depletion of IGF-1 and IGF-1R. 相似文献
10.
Synaptic junctions are highly specialized structures designed to promote the rapid and efficient transmission of signals from the presynaptic terminal to the postsynaptic membrane within the central nervous system. Proteins containing PDZ domains play a fundamental organizational role at both the pre- and postsynaptic plasma membranes. This review focuses on recent advances in our understanding of the mechanisms underlying the assembly of synapses in the central nervous system. 相似文献
11.
Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1 总被引:11,自引:0,他引:11
下载免费PDF全文

The Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) protein plays a critical role in the repression of photomorphogenesis during Arabidopsis seedling development. We investigated the control of COP1 partitioning between nucleus and cytoplasm, which has been implicated in the regulation of COP1 activity, by using fusion proteins between COP1 and beta-glucuronidase or the green fluorescent protein. Transient expression assays using onion epidermal cells and data from hypocotyl cells of stably transformed Arabidopsis demonstrated that COP1 carries a single, bipartite nuclear localization signal that functions independently of light. Nuclear exclusion was mediated by a novel and distinct signal, bordering the zinc-finger and coiled-coil motifs, that was able to redirect a heterologous nuclear protein to the cytoplasm. The cytoplasmic localization signal functioned in a light-independent manner. Light regulation of nuclear localization was reconstituted by combining the individual domains containing the nuclear localization signal and the cytoplasmic localization signal; the WD-40 repeat domain of COP1 was not required. However, phenotypic analysis of transgenic seedlings suggested that the constitutively nuclear-localized WD-40 repeat domain was able to mimic aspects of COP1 function, as indicated by exaggerated hypocotyl elongation under light conditions. 相似文献
12.
Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. 总被引:9,自引:0,他引:9
Kaisa Lehti Jouko Lohi Minna M Juntunen Duanqing Pei Jorma Keski-Oja 《The Journal of biological chemistry》2002,277(10):8440-8448
The formation of multimeric complexes by membrane-type 1 matrix metalloproteinase (MT1-MMP) may facilitate its autocatalytic inactivation or proMMP-2 activation on the cell surface. To characterize these processes, we expressed various glutathione S-transferase/MT1-MMP fusion proteins in human HT-1080 fibrosarcoma cells and SV40-transformed lung fibroblasts and analyzed their effects on MT1-MMP activity and potential homophilic interactions. We report here that MT1-MMP is expressed on the cell surface as oligomeric 200--240-kDa complexes containing both the active 60-kDa and autocatalytically processed 43-kDa species. Overexpression of a glutathione S-transferase/MT1-MMP fusion protein containing the transmembrane and cytoplasmic domains of MT1-MMP inhibited the phorbol 12-myristate 13-acetate-induced autocatalytic cleavage of endogenous MT1-MMP to the 43-kDa species, but not proMMP-2 activation. On the other hand, a similar fusion protein with the hemopexin, transmembrane, and cytoplasmic domains inhibited proMMP-2 activation in a dominant-negative fashion. These results suggest that both the autocatalytic cleavage of MT1-MMP and proMMP-2 activation may be regulated by oligomerization through the cytoplasmic and hemopexin domains. Indeed, either domain, when attached to the cell membrane by a transmembrane domain, formed stable homophilic complexes. Copurification of MT1-MMP with these fusion proteins correlated with their cell-surface co-localization. Thus, MT1-MMP oligomerization through the hemopexin, transmembrane, and cytoplasmic domains controls its catalytic activity. 相似文献
13.
Stuart C H Allen Claire M L Barrett Nicola Ray Colin Robinson 《The Journal of biological chemistry》2002,277(12):10362-10366
The twin-arginine translocation (Tat) system mediates the transport of proteins across the bacterial plasma membrane and chloroplast thylakoid membrane. Operating in parallel with Sec-type systems in these membranes, the Tat system is completely different in both structural and mechanistic terms, and is uniquely able to catalyze the translocation of fully folded proteins across coupled membranes. TatC is an essential, multispanning component that has been proposed to form part of the binding site for substrate precursor proteins. In this study we have tested the importance of conserved residues on the periplasmic and cytoplasmic face of the Escherichia coli protein. We find that many of the mutations on the cytoplasmic face have little or no effect. However, substitution at several positions in the extreme N-terminal cytoplasmic region or the predicted first cytoplasmic loop lead to a significant or complete loss of Tat-dependent export. The mutated strains are unable to grow anaerobically on trimethylamine N-oxide minimal media and are unable to export trimethylamine-N-oxide reductase (TorA). The same mutants are completely unable to export a chimeric protein, comprising the TorA signal peptide linked to green fluorescent protein, indicating that translocation is blocked rather than cofactor insertion into the TorA mature protein. The data point to two essential cytoplasmic domains on the TatC protein that are essential for export. 相似文献
14.
Pharbin, a 5-phosphatase that induces arborization, is one of the phosphoinositide 5-phosphatases that is highly mutated in patients with Joubert syndrome. Pharbin can hydrolyse PI(4,5)P(2) and PI(3,4,5)P(3) and has the same substrate specificity as SHIP2 and SKIP, which negatively regulate PI3K signalling. Here, we investigated the role of pharbin in IGF-1/PI3K signalling. Ectopic expression of pharbin markedly suppressed the IGF-1-induced activation of Akt without affecting p42/44 MAP kinase phosphorylation. In contrast, pharbin silencing by RNA interference increased the IGF-1-induced phosphorylation of Akt, suggesting that pharbin negatively regulates PI3K/Akt signalling. Pharbin expression also inhibited the phosphorylation of p70 S6 kinase and 4E-BP1 as well as the subsequent protein synthesis in response to IGF-1 treatment. Taken together, these results indicate that pharbin is an important negative regulator of IGF-1/PI3K/Akt signalling and protein synthesis. 相似文献
15.
J R Arden O Nagata M S Shockley M Philip J Lameh W Sadée 《Biochemical and biophysical research communications》1992,188(3):1111-1115
We measured dose-response curves for carbachol stimulation of phosphatidyl inositol (PI) turnover with mutants of the Hm1 muscarinic cholinergic receptor having various deletions from amino acids 219 to 358 of the large third intracellular (i3) loop (208 to 366). These deletions had only small or no effects on the ability of Hm1 transfected into HEK 293 cells to stimulate PI turnover. This result indicates that only small regions of 9 to 11 amino acids adjacent to trans-membrane domains (TMDs) 5 and 6 can be directly involved in G protein coupling. Point mutations were constructed to test the role of charged amino acids in these junctions. A triple point mutation of Hm1 (E214 A/ E216K/ E221 K), which mimics the charge distribution in Hm2 (negatively coupled to cAMP) over the first 14 amino acids of i3, and a double point mutation in the N terminal junction, K359A/K361A, both failed to affect carbachol stimulated PI turnover. Therefore, charge distribution in the loop junctions appears to play a minor role in G protein coupling of Hm1 in HEK 293 cells. 相似文献
16.
17.
18.
Johnson JE Goulding RE Ding Z Partovi A Anthony KV Beaulieu N Tazmini G Cornell RB Kay RJ 《The Biochemical journal》2007,406(2):223-236
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding. 相似文献
19.
Delcourt N Thouvenot E Chanrion B Galéotti N Jouin P Bockaert J Marin P 《The EMBO journal》2007,26(6):1542-1551
Insulin-like growth factor-1 (IGF-1) and pituitary adenylyl cyclase activating polypeptide (PACAP) are both potent neurotrophic and antiapoptotic factors, which exert their effects via phosphorylation cascades initiated by tyrosine kinase and G-protein-coupled receptors, respectively. Here, we have adapted a recently described phosphoproteomic approach to neuronal cultures to characterize the phosphoproteomes generated by these neurotrophic factors. Unexpectedly, IGF-1 and PACAP increased the phosphorylation state of a common set of proteins in neurons. Using PACAP type 1 receptor (PAC1R) null mice, we showed that IGF-1 transactivated PAC1Rs constitutively associated with IGF-1 receptors. This effect was mediated by Src family kinases, which induced PAC1R phosphorylation on tyrosine residues. PAC1R transactivation was responsible for a large fraction of the IGF-1-associated phosphoproteome and played a critical role in the antiapoptotic activity of IGF-1. Hence, in contrast to the general opinion that the trophic activity of IGF-1 is solely mediated by tyrosine kinase receptor-associated signalling, we show that it involves a more complex signalling network dependent on the PAC1 Gs-protein-coupled receptor in neurons. 相似文献
20.
Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. 总被引:6,自引:0,他引:6
Maria Lina Massimino Cristiana Griffoni Enzo Spisni Mattia Toni Vittorio Tomasi 《Cellular signalling》2002,14(2):93-98
Caveolae, the flask-shaped membrane invaginations abundant in endothelial cells, have acquired a prominent role in signal transduction. Evidence, that events occurring in caveolae participate in cell survival and angiogenesis, has been recently substantiated by the identification of two novel caveolar constituents: prostacyclin synthase (PGIS) and the cellular form of prion protein (PrP(c)). We have shown that PGIS, previously described as an endoplasmic reticulum component, is bound to caveolin-1 (cav-1) and localized in caveolae in human endothelial cells. By generating prostacyclin, PGIS is involved in angiogenesis. Previous observations regarding the localization of PrP(c) in caveolae-like membrane domains (CLDs) have been recently confirmed and extended. It has been demonstrated that PrP(c) is bound to cav-1 and, by recruiting Fyn kinase, can participate in signal transduction events connected to cell survival and differentiation. The new entries of PGIS and PrP(c) in caveolar components place caveolae and CLDs at the centre of a network, where cells decide whether to proliferate or differentiate and whether to survive or to suicide by apoptosis. 相似文献